OpenlMU Documentation

Aceinna Engineering

May 24, 2021

Table of contents

I OpenIMU

1 Overview

2 WARNING!!!! Before You Start Development

3 Tools

4 Ready-to-Use Applications

5 Tutorial - What The User Needs to Know to Build The First Application
6 OpenIMU Software Overview

7 Algorithm Simulation System

8 Python Serial Driver

I Products

9 OpenIMU300ZI - EZ Embed Industrial Module

10 OpenIMU300RI - Rugged Industrial CAN Module

11 OpenIMU330BI - Triple Redundant, 1.5 °/Hr, SMT Module

12 OpenIMU335RI - Triple-Redundant Rugged Industrial CAN Module

III Dev Support Algorithms
13 OpenIMU Hardware/Software Interface
14 EKF Algorithms

15 Magnetic Sensor Algorithms

12
29
46
68
121

122

123
124
139
156

178

189
190
194

222

IV Miscellaneous 223
16 C-Code Serial Driver 224

Index 225

OpenlMU Documentation

OpenIMU is a precisely calibrated open source Inertial Measurement Unit platform. Users are able to quickly develop
and deploy custom navigation/localization algorithms and custom sensor integrations on top of the OpenIMU platform.
OpenIMU also has pre-built drivers in Python as well as a developer website - Aceinna Navigation Studio (ANS).
These tools make logging and plotting data, including custom data structures and packets very simple.

Social: Twitter | Medium

Table of contents 1

https://twitter.com/MEMSsensortech
https://medium.com/@mikehorton

Part I

OpenIMU

CHAPTER 1

Overview

OpenIMU is a precisely calibrated, open-source Inertial Measurement Unit platform for the development of navigation
and localization algorithms. A free Visual Studio Code (VSCode) extension is installed which contains all the software
and tools necessary to create and deploy custom embedded sensor apps using OpenIMU. Visual Studio Code is the
recommended IDE and the extension configures VS Code to include easy access to compilation, code download,
JTAG debug, IMU data logging as well as OpenIMU platform updates and news. A developer website called Aceinna
Navigation Studio (ANS) includes additional support tools including a GUI for controlling, plotting and managing
data files logged by your Custom IMU.

OpenlMU™ Aceinna
Hardware Navigation Studio™
T)
7 Major Benefits:
‘ - Cutting Edge Hdw &
Algorithms
IMU Module - Simulation " Minimize Field Test
Data Logging
Charting Save 5M’s in NRE
Mapping
App Maf"_ﬂitlﬂhce Learn, Grow & Follow
Embedded Software Community a trusted partner

Python OpeniMU Driver, CLI & Server

The OpenIMU and ANS platform and tool-chain are supported on all three Major OS cross-development platform:

OpenlMU Documentation

¢ Windows 7 or 10
*« MACOS 10

e Ubuntu 14.0 or later

Note: Contributions to the public repositories related to this project are welcomed. Please submit a pull request.

The following pages cover:

¢ What is OpenIMU
* What is the Acienna Navigation Studio

* Who is using OpenIMU and the Acienna Navigation Studio

1.1 What is OpenIMU?

* OpenIMU is an open software platform for development of high-performance navigation and localization appli-
cations on top of a family of low-drift pre-calibrated Inertial Measurement Units (IMU).

e OpenIMU hardware consists of a 3-axis rate sensor (gyro), 3-axis accelerometer platform, and 3-axis magne-
tometer module.

* The module contains a low-power embedded ARM Cortex-M4 CPU with floating-point math support. Extra IO
and Ports make connection of external peripherals such as GPS, Odometer, and other more advanced sensors
possible.

* The OpenIMU hardware comes in different form-factors including:

Hardware Configurations

Type | Part Number Hardware Features

EZ OpenIMU300ZI | Easy to Embed 3-5V UART/SPI Industrial IMU Module
CAN | OpenIMU300RI | Rugged, Waterproof 5-32V CAN/RS232 Industrial Module
SMT | OpenIMU330BI | Triple Redundant, SMT, 2°/Hr IMU

Open-Source Embedded Software

* OpenIMU hardware runs an open-source stack written on top of standard ARM Cortex libraries.
* OpenIMU300 use FreeRTOS while OpenIMU330 uses a simple real-time scheduler

* The open-source stack includes EKF (Extended Kalman Filter) algorithms that can be used directly or cus-
tomized for application specific use.

* The overall system loop is typically configured to run at 800Hz ensuring high quality aliasing-free measurements
for processing.

* Also included in the OpenIMU embedded software platform are drivers for various GPS receivers, customizable
SPI, CAN, and UART messaging, and customizable settings that can be adjusted run-time and/or permanently.

* A number of predefined settings are defined for baud rate, output date rate, sensor filter settings, and XYZ axis
transformations.

* The Core OpenIMU embedded software consists of the following:
— FreeRTOS

— Extended Kalman Filter Algorithms

1.1. What is OpenIlMU? 4

OpenlMU Documentation

High-Speed Deterministic Sampling

Messaging
GPS Drivers

Accurate Time Service

Sensor Filtering

Settings Module for Dynamic and Permanent Unit Configuration

1.2 What is Aceinna Navigation Studio?

& developers.aceinna.com Q ¥ £

- 0

NCE

Navigation Studio™

Simulate, Deploy, and Analyze
Navigation Systems

GET STARTED

© Simulate <> Code & Deploy @ Analyze

* The Aceinna Navigation Studio (https://developers.aceinna.com) is a navigation system developer’s website and
web-platform.

* It consists of a graphical user interface to control and configure OpenIMU units.

» Using a JSON configuration file (“openimu.json”), the graphical user interface can be customized for user
specific messaging and settings without any additional coding. This aligns the embedded code with both the
Python device server and the GUI pages available on ANS (https://developers.aceinna.com).

* Online tools include graphing, mapping, logging, and simulation.
 User Forum is available at (https://forum.aceinna.com).
Python & the Acienna Navigation Studio

The Acienna Navigation Studio (ANS) requires Python to operate. If the user has not installed Python, it can be
installed from https://www.python.org/downloads/. Download and install the latest version.

An open-source Python driver for OpenIMU is available and required. The Python driver can be used directly from the
terminal to load, log, and test your application. The driver leverages the PySerial library to connect to an OpenIMU

1.2. What is Aceinna Navigation Studio? 5

https://developers.aceinna.com
https://developers.aceinna.com
https://forum.aceinna.com
https://www.python.org/downloads/

OpenlMU Documentation

of a serial connection. The python script supports configuring units, firmware updates (JTAG is faster for debugging),
and local data logging.

In addition, the open-source Python driver can acts as a server connecting the OpenIMU hardware with our ANS
developer platform for a GUI experience, cloud data storage and retrieval, as well as stored file charting/plotting tools.

The Aceinna VS Code extension ensures a python environment automatically. The OpenIMU python code can be
installed independently by cloning the repository https://github.com/python-openimu or using pip as shown below.

pip install openimu

Connection
* Connection Status is shown on the link symbol at the top right hand side of the page.
¢ Device information is exposed on the main IMU page. (https://developers.aceinna.com/devices/record-next)

* The baseline OpenIMU firmware provides a set of “standard settings” such as baud rate, output data rate, and
more.

» Custom options are added by adding additional options to “UserConfiguration” in both the OpenIMU embedded
C code as well as the the openimu.json file which provides a summary of the descriptions and potential values

for the UL
@ OpenIMU Monit connEecTED
&
MU Info Outputs Period(s)
&) OpenlMU300ZA Acceleration +~ 10 - >
* SN

1808400445
</>

L

App Version
OpenlIMU Framework
1.0.0

PN
5020-3885-01

Firmware Version
1.0.30

Baud Rate
115200

Packet Type
z1

Packet Rate
50

Graphing

Use the play, record, and stop buttons to log data.

1.2. What is Aceinna Navigation Studio? 6

https://github.com/python-openimu
https://developers.aceinna.com/devices/record-next

OpenlMU Documentation

OpenIMU Monit conNECTED

IMU Info

Outputs
OpenlMU300ZA Acceleration,Angular Rate v v ® Il m
SN
1808400445 80
<> 60 Acceleration :
PN 40
-_l 5020-3885-01 20 mmm xAccel 1 -1.553
0
e e R e yAccel :0.877
App Version 20
OpenIMU Framework -40 mmm zAccel :-9.687
1.0.0 60 o
-80
Firmware Version 13:28:16 13:52:36 14:15:56 14:41:36 15:06:36 15:33:16 15:57:36 16:21:36 16:45:555 17:09:54
1.0.30
Baud Rat 400
au ate .
D 300 Angular Rate :
200
100 mmm xRate : 0.308
Packet Type o "
z1 yRate : 4.075
-100
Packet Rate -200 = zRate : -1.033
50 -300

File Retrieval

Logged files are retrieved on the My Files page which opens up a zoomable graph view. Requires Login

My Log Files

ro00 ()

IMU-300 INS-1000 RTK LOGIN LOGS RTK ERRORLOGS RTK ROVER POSITION
</>
-) 2019-08-16 (s Yad
1 parkinglot_2019_08_16_13_21_51.csv 5020-3885-01 OpenIMU300ZA e2 100 13:24:59 -
h g
) 2019-08-03 [+ Yad
2 filterTest_2019_08_03_14_59_25.csv 5020-3885-01 OpenIMU300ZA z1 100 14:50:43 -
) 2019-03-13 [+ Yad
3 mike2.csv OpenIMU300ZA OpenIMU300ZA 1.0.0 z1 100
16:37:43 'a
. 2018-12-02 [+ Yad
4 quicktest.csv OpenIMU300ZA OpenIMU300ZA 1.0.0 al 50 23:49:46 -

1.3 Who is using it?

The OpenIMU project is recommended for autonomous system developers with challenging navigation and localiza-
tion requirements. The system is being used by several autonomous driving teams globally.

1.3. Who is using it? 7

CHAPTER 2

WARNING!!!! Before You Start Development

Contents

* Save unit image:

* Recover unit image:

Before You start developing it is recommended to read whole unit image and save it to binary file to be able to
recover unit if something unexpected happened

Unit image consists of:
1. Bootloader
2. Original (factory) application image
3. Calibration and Configuration partitions.

If bootloader or calibration tables are damaged - unit will not work properly!!!.

2.1 Save unit image:

1. Install ST-Link Utility from here: https://www.st.com/en/development-tools/stsw-1ink004.html
Connect ST-Link debugger to OpenIMU Evaluation Kit. and to PC

Power On Evaluation Kit

Start ST-Link utility on your PC.

Click Device->Connect.

Enter value 0x80000 for OpenIMU300 and 0x20000 for OpenIMU330 into Size box and hit enter

N oA »d

Click File->SaveAs and save image to well known location. For OpenIMU300 image size should be 512K
bytes. For OpenIMU330 image size should be 128 KBytes.

https://www.st.com/en/development-tools/stsw-link004.html

OpenlMU Documentation

i, STM32 ST-LINK Utility - O X
File Edit View Target ST-LINK External Loader Help
Hd @22 85
R d/\'
Memory display Device STM32L4x3
- - - Device ID 0x435
Address: | 0x08000000 | Size: | 0x5514 | Data Width: R
Flash size 128KEytes
Device Memory @ 0x08000000 : File : IMU383_Bootloader_0.0.4.bin [CliveUpdate
Target memory, Address range: [0x08000000 0x08005514]

Address 0 |1 |2 |3 |4 |5 |6 |'.-' |3 |9 |A |B |C |D |E |F |ASCII G
(08000000 00 FF |00 20 E5 05 |00 08 09 36 |00 08 0B 36 |00 08 . &....6...6..
(08000010 0D (36 |00 08 OF 36 |00 08 1 36 |00 08 (00 |00 (00 |OO A Jneolinan.donanas
(08000020 0 (00 (OO0 (OO (OO (OO (OO (OO (OO (OO (OO (OO 13 36 |00 T |ecasatconanoe 6..
008000030 15 36 |00 08 (00 (00 |00 OO 17 36 |00 08 19 36 |00 08 ol Jnnnnane 6...6..
(08000040 £y 06 |00 08 3 06 |00 08 3 06 |00 08 3 06 |00 08 15561 Enallaas1iEse
0x08000050 £ 06 |00 08 £ 06 |00 08 £ 06 |00 08 £ 06 |00 08 UBsa 1 saasaa Usas
(08000060 £y 06 |00 08 3 06 |00 08 3 06 |00 08 3 06 |00 08 15561 Enallaas1iEse
008000070 59 |40 |00 08 |45 40 |00 08 Al 51 00 08 B1 51 00 08 Y@..E@..;Q..x
(x08000080 3 06 |00 08 3 06 |00 08 3 06 |00 08 F9 35 |00 08 'I...1...‘I...L|5..v
£ >
09:00:42 : ST-LINK SM : 53FF6E0S5177435752180787
09:00:42 : V213257
09:00:42 : Connected via SWD.

09:00:42 : SWD Frequency = 4,0 MHz.

09:00:42 : Connection mode : Connect Under Reset.

09:00:42 : Debug in Low Power mode enabled.

09:00:42 : Device ID:0x435

09:00:42 : Device flash Size : 128KBytes

09:00:42 : Device family :5TM32L4x3

bebug in Low Power mode enabled. bevice ID:0x435

2.2 Recover unit image:

1. Connect ST-Link debugger to OpenIMU Evaluation Kit. and to PC
Power On Evaluation Kit

Start ST-Link utility on your PC.

Click Device->Connect.

Click File->open and open previously saved file.

Click Target->Programé& Verity.

Make sure that Start address is 0x08000000 and click Start.

NS A » N

2.2. Recover unit image: 9

OpenlMU Documentation

Download [OpenlMU300_RI_IMU_1_1_1.bin])4

Start address | 0=02000000

File path | C:\JsershaceinnahDesktophOpenlt200_RI1_(MU_1_1_1 Brovse

E stra options
[5kip Flash Erase [5kip Flash Pratection verification

Yerification
(@) Verify while programming () Werify after programming

Click "Start" to program target.

After prograrmmming
[] Reset after pragramming [] Full Flash memorne Checksum

8. After reprogramming of OpenIMU300 unit (RI or ZI) perform write protection of sectors 0 and 2

9. After reprogramming of OpenIMU330BI unit perform write protection of last 6 sectors (58 to 63)

2.2. Recover unit image: 10

OpenlMU Documentation

Option Bytes >
Fead Out Protection BOR Level
Levld 2] leds]
I1zer configuration option byte
/] WDG_STOP [] WDG_STDEY nBoatd [~ rEOOTO
WA DG _ S [DG_LLFP hBont BOOTI
nSRARM_Pariby F<_IWDG_STOR nDBOOT nBFB2
SRAMZ RST F<_IWDG_STODRY nDBAMNE, nBOOT_SEL
SRaMZ2_PE FCROFP_RDF DE1M DUALBAME,
nRST_SHODW nBioot0_S_Cig IRHEM BOREM
[#nRST_STOP [»] nSwWEOOTO [DG _Shw
nRST_STOBEY WDDA,_konitor S0ADCT2_YDD_kMonitor
MRST_MODE
Securty option bptes
SEC_SIZE (w00 SEC_SIZEZ 0w00 BOOT_LOCE.
Boot address ophion bytes
BOOT_ADDO [H] Boat from [H]
EOOT_aDD1 [H] Boat from [H]
I1zer data storage option bytes
Data 0 [H] Data 1 [H]
Flash sectors protection
white Protection BeadMwiite Protection [PCROF)
Page Start address Size Frotection 2
[] Page 55 0=0801B800 2K Ma Pratection
] Page BR 002301C000 2K Mo Protection
[] Page 57 00301C800 2K Mo Protection
Page 58 0030710000 2K Wrike Protection
Page 53 003010800 2K WWirike Pratection
Page 60 0=0301EQ00 2 K Wrike Pratection
Page 61 0=0301EB00 2K Wrike Pratection
Page B2 0=0301F000 2K Wirike Pratection
Page 63 0=0801F300 2K WWirike Pratection v
£ >
Unzelect all Select all

2.2. Recover unit image:

11

CHAPTER 3

Tools

This section reviews more detail on various Tools available for OpenIMU development environment:

3.1 PC Tools Installation

Platforms - Computers with the following Operating Systems
* Windows 10 or 7
» Ubuntu version 14.0 or later
* MAC OS
Visual Studio Code
Visual Studio Code - can be downloaded from here: https://code.visualstudio.com
ST-LINK Debugger Driver
* MacOS - ST-LINK drivers are automatically installed for MAC OS.

» Windows - ST-LINK drivers should be also installed automatically. But in case if it was not - ST-LINK V2
driver can be manually installed for Windows. The Windows driver is downloaded from the following page
link: http://www.st.com/en/development-tools/st-link-v2.html

e Ubuntu - please see step 5.
Installation of OpenIMU development platform
To install OpenIMU development platform:
1. Start Visual Studio Code.
2. On leftmost toolbar find “Extensions” icon and click on it.
3. In the text box “Search extensions on Marketplace” type “Aceinna” and hit enter

4. Install Aceinna Extension and Follow prompts.

12

https://code.visualstudio.com
http://www.st.com/en/development-tools/st-link-v2.html

OpenlMU Documentation

Welcome x

Py 4 INSTALLED

Aceinna IDE 0.0.1
Aceinna Navigation Studio: open-so...

o

debugging, and ...
o)

C# 1
C# for Visual Studio Code (powered...

o

ESLint 1.4.7
Integrates ESLint into VS Code.
02
Native Debug
GDB, LLDB & Mago-MI Debugger su...
o2
PHP Debug 1
Debug support for PHP with XDebug
to2
PHP Extension Pack 1.0.1
Everything you need for PHP develo

First steps

After installation of “Aceinna” extension click on “Home” icon at the bottom of the screen. It will bring
up Aceinna OpenIMU platform homepage. Click on “Custom IMU examples”, chose desired example
and click “Import”.

4 Aceinna Home - IMU - Visual Studio Code - o X
File Edit Selection View Go Debug Tasks Help

EXTENSIONS

[seoren s mvatepoce]

INSTALLED O]

Aceinna 0.2 213 K5 Welcome to
Aceinna Navigation Studio: open-source, ...
PlatformlO

i i Quick Access
C/C++ 0176 ©96M K4

/C++ InteliSense, debugging, and code... | Q - -
Microsoft ol ' : 03 Open Project
Account

PlatformlO IDE 0.17.1 263K k4
Development environment for loT, Arduin..
PlatformiO ol |
RECOMMENDED (3) Platforms
* ‘ C/C++ Clang Command.. 022 & 434k *5 Recent News
*

Completion and Diagnostic for C/C
ki MITAN L3

Ya simulation | MATLAB A python N\

. . De
C++ Intellisense 022 @72 | g nertial
C/C++ Intellisense with the help of Embedded | Sy, C/C++ 5 s

austin Code

Applications:

Compiler& | ®IAR

Visual Studio Team ... 1.1360 871K *2.5 If-Driving

o Team Services including Feb 15 W Mike Horton Feb6 W ACEINNA, Inc. Febl W ACEINNA, Inc.
Using Web Technologies to Efficiently Open-Source, Python-based GNSS-INS Who is Aceinna? Global rIDG backs
Develop Navigation Systems Simulation — Mike Horton — Medium s for Al

Recent Projects

§9) Platformio

Peamples © ©0A0 PPODebugMu) 3 v » W B <«

The required example will be imported into working directory in folder:
C:\Users\<username>\Documents\platformio\Projects\ProjectName

Now you can edit, build and test the project. All your changes will remain in the above-mentioned
directory and subdirectories. Next time when you return to development - open Aceinna “Home” page

3.1. PC Tools Installation

13

OpenlMU Documentation

and click “Open Project”, choose “Projects” and select required project from the list.

The source tree of imported project tree has the following structure:

project directory —|

|-— .pio ——|
\ |-—— build ——|
\ \ |-— board-|
\ \ |-— binary image,
— (firmware.bin)
\ \ |[-— elf image (firmware.
—elf)
\
\
\
\
|- libdeps —|
| | —— board-—| Library dependencies

|

|

|

|

|

|

| |

\ |-—libraryl src tree
| |

\ |-—library2 src tree
| |

| |-—library3 src tree
| |

|

|

|

|

|-—include (optional user include files)
|
|--1ib (optional user library directory tree)

| -—src (user source files tree)

Compile and JTAG Code Loading

Once you have imported an example project, a good first step is to compile and download this application
using your ST-LINK. At the bottom of the VS Code window is the shortcut toolbar shown below. To load
an application to the OpenIMU with JTAG, simply click the Install/Download button while the ST-LINK
is connected to your EVB.

°

Q0A0 & v = T B « [

HOME ACEINMNA SHELL
COMPILE SERIAL MON
DOWNLOAD (JTAG) CLEAN
3.1. PC Tools Installation 14

OpenlMU Documentation

The OpenIMU development environment uses PlatformIO’s powerful open-source builder and IDE. This
on-line manual focuses on on OpenIMU specific information, and it does not attempt to fully discuss all
of the IDE’s powerful features in depth. For more information on PlatformIO builder and IDE features
include command line interface, scripting and more please see the PlatformIO

5. ST-LINK Install for Ubuntu (Manual Version)
Go to https://github.com/texane/stlink and read instructions carefully.

On local Ubuntu machine, you will clone the aforementioned repository and make the project. This
requires the following packages to be installed:

e CMake > v2.8.7
* Gcece compiler

e Libusb v1.0

Run from source directory stlink/
Smake release

Scd build/Release

$sudo make install

Plug ST-LINK/V2 into USB, and check the device is present
$1ls /dev/stlink-v2

3.2 Development Tools

= () GitHub

S
IDE + Tools
] . Reference Algos
Simulstion, SIMULATE CODE Customize
Data Collection Program/Upload

Cloud Storage

C,C++, Fast Setup
Python for Analysis

OpenIMU {}{}Q
Hardware

Community DISCUSS BUILD Add-On Extensions
Q&A, Videos " - Hardware & Software
Reference Data Free & Paid

Forum

Aceinna & 3 Party

The OpenIMU development environment consists of the following main components:
* Acienna Navigation Studio (ANS)
¢ Visual Studio Code IDE (VSCode)

3.2. Development Tools 15

https://docs.platformio.org
https://github.com/texane/stlink

OpenlMU Documentation

* Debugging using the PlatformIO Debugger and the JTAG Debug Adapter
* In System Firmware Update
* Python Interface

* ‘openimu.json’ Configuration File

3.2.1 Aceinna Navigation Studio

@& developers.aceinna.com Q W £

- 0

NCE

Navigation Studio™

Simulate, Deploy, and Analyze
Navigation Systems

GET STARTED

© Simulate <> Code & Deploy @ Analyze

Aceinna Navigation Studio is a web-portal and UI for your OpenIMU. To run it, first ensure the Python OpenIMU
driver is installed, then start the server form the command line interface as shown below.

Sopenimu
ConnectedOpenIMU300ZI - 0.0.1 SN:1808629112

Supported browsers are Chrome, Opera, and Edge. Firefox also works but requires an extra step described here.
https://stackoverflow.com/questions/11768221/firefox-websocket-security-issue

To plot data go to the link https://developers.aceinna.com/devices/record-next and click play. You can also log from
this GUL

The settings as well as available packet types that show up in ANS graphical user interface are controlled by open-
imu.json and their corresponding code in userConfiguration.c. Select the packet that you would like to display.

Once a file is logged you can retrieve the file at https://developers.aceinna.com/devices/files

Note: Your data file list is only shown to you and is tied to your login credentials. The file list is not available to other
users.

3.2. Development Tools 16

https://stackoverflow.com/questions/11768221/firefox-websocket-security-issue
https://developers.aceinna.com/devices/record-next
https://developers.aceinna.com/devices/files

OpenlMU Documentation

3.2.2 Visual Studio Code IDE

B Aceinna - Visual Studio Marke x

@ Secure https://marketplace.visualstudio.com/items?itemName=platformio.aceinna-ide

Aceinna EE3
PlatformlO | & 240installs | % v % % % (2)

Install Trouble Installing? 12

Overview Q& A Rating & Review

Aceinna Navigation Studio Categories

Other
Open-source embedded development platform for Aceinna IMU hardware. Run custom algorithms and navigation
code on Aceinna IMU/INS hardware Tags

EXPLORER = Aceinna Home X Aceinna IMU INS MEMSIC
4 OPEN EDITORS

= Aceinna Home

4 1My Resources
» .pioenvs Welcome to v Issues
» .vscode) Repository
» boot Quick Access
ey Homepage

»
==

> id Changelog

- | INCE

Download Extension
4 src
board O . .
oar = Project Details
debuginterface Platforms
—i . ©) Aceinna/platform-aceinna_imu
Recent News
gmath.c 39 No Pull Requests

qmath.h i

Devices

03 Open Issues
© Last commit: 3 days ago

b usart

user i) More Info
userProtocol Version 012
utilities
; Last updated 6/28/2018, 9:30:51 AM
main.c

taskDataAcquisition.. A t Publisher PlatformlO
gitignore Unique Identifier platformio.aceinna-ide
travis.yml
Report Report Abuse

= platformio.ini Recent Projects

At the heart of the OpenIMU IDE is a custom extension built for Visual Studio Code. The installation of this ex-
tension is detailed in Quick Start. Aceinna’s OpenIMU extension is a custom version of the popular open-source
embedded development extension PlatformIO. PlatformIO provides many additional features including an extensive
set of command line tools which are are not documented on this site. Please visit https://docs.platformio.org for more
details.

The Aceinna Visual Studio extension adds an easy to find home button at the bottom of the Visual Studio tool bar. This
is shown below. Click the home button any time to return to the launch screen for embedded OpenIMU development
within Visual Studio Code.

&

Q0A0 (} v » I B =

The Aceinna Visual Studio extension also automatically installs additional supporting tools. Importantly if your local
system does not already have Python, the extension will install Python which enables a large number of features on
the platform including serial drivers and a small server which can connect your IMU to the Aceinna Navigation Studio

3.2. Development Tools 17

https://docs.platformio.org

OpenIMU Documentation

developer’s site for charting, graphing, and configuration.

The basic functions such as compile, clean, and upload code to device are also easily accessed from the tool bar at the

bottom of the VSCode extension.

Note: Do not install the PlatformIO extension. Instead install the Aceinna extension. This will install all the

PlatformIO tools automatically, as well as the IMU source code and Python drivers.

3.2.3 Debugging using the PlatformlO Debugger and the JTAG Debug Adapter

There are two primary methods to debug a program on OpenIMU.
 Use Visual Studio Code with ST-Link JTAG pod.
» Use the debug serial port to output debug messages.

1. Debugging Using Visual Studio Code and JTAG Debugger

Visual Studio Code with installed Aceinna extension supports in-system debugging via ST-LINK JTAG
pod. It allows to load and run application, stop in any place of the code by using breakpoints, observe
and set values of local and global variables, observe device memory contents. The following screen shots
show Visual Studio Code screen in debug mode.

- O X

Help

0E8UG |) [PlatformlO Debugger ¥ | ## 3 | platformio.ini C UserAlgoritl b2 ¢ 1 O W |entationc C UserMessaging.c = Aceinna Home @ M -
144

VARIABLES

145 fi

4 Local

> Global

116
147
» Static 148
149
150
151
152
153 int main(void)
154 {
155
156
157
»158
159
160 App
161 platformInitConfigureUnit();
w []
163 o

main@@xese2379e sravmain.c [E3 164 userInitConfigureUnit();

- AR
p Chip Debu RE

BREAKPOINTS

WATCH

trol. The results might diffe d to plain JT

o
DISASSEMBLY >

Pexamplest S ©0A0 P PlatformlO Debugger VG AHRS) } v » @ B « [main(void) Ln 162 Col1 Spaces:4 UTF-8 CRLF C Win32 @ A

Debug mode can be entered by clicking on “Debug” icon - fourth from top on very left of the screen and
then clicking on green arrow “PlatformIO debugger” on top of the screen or alternatively from the menu
“Debug->Start Debugging”. After entering debug mode use debug control icons on top of the screen or
commands from “Debug’ menu. After clicking “Debug” icon on the left of the screen while in debug
mode allows to observe variables, memory, registers, call stack, etc.

2. Debugging Using Debug Serial Port

User defined ASCII messages can be sent out via debug serial connection. Default baud rate is 38.4
KBaud. One can easily change debug port baud rate in main.c file:

3.2. Development Tools

18

OpenIMU Documentation

//

7 p +he DFE
l1ze the DE

JC I (se 1) po
InitDebugSerialCommunication (38400); // debug

U

Custom printf-like syntax outputs ASCII data on debug serial port

int tprintf (char «format, ...);

Alternative macros for outputting type-specific values defined in the debug.h file.
OpenIMU unit has built-in CLI which can be enabled by uncommenting next line in file platformio.ini :

-D CLI

2] platformio.ini - VG_AHRS - Visual Studio Code - o x

File Edit Selection View Go Debug Tasks Help

EXPLORER E i C UserMessaging.c = Aceinna Home
OPEN EDITORS i

= platformio.ni

C UserAlgorithm.c src\use

C dataProcessingAndPresentation.c src\us

C UserMessaging.c sr

£ Aceinna Home

€ mainc y £ and examples

C userAPLh include\API

VG_AHRS)
© userarin imu38e]

C dmuh) aceinna_inu
C FreeRTOSConfigh rchive = false

d OpenIMU30OZA
€ GlobalConstantsh
€ Indicesh
C osresourcesh

~-\--\openimu-1ib\Misc
openimu-lib\Platform
€ scalingh s

C taskDataAcquisitionh
C taskUserCommunicationh
€ uch_packet structh

> Idscripts

> lib

-1 include/APT
-I src/user

-L ldscripts
4 src
4 user
C dataProcessingAndPresentation.c - 1 1ibPlatfo
-Wno-comment
-W1, -Map, imu380 . map
-Wl, -Tstm32f40x. 1d
-mthumb -mcpu=cortex-m4 -nfloat-abi=softfp -mfpu=Fpva-sp-di6

C UserAlgorithm.c
€ UserConfiguration.c
C UserConfigurationh
C UserMessaging.c
€ UserMessagingh a 1 - jlink

€ mainc v Link

C taskDataAcquisition.c

gitignore

I travisyml

In27,Col2 TabSize:4 UTF-8 CRIF Ini @ A

It allows to send custom ASCII commands to OpenIMU unit via debug serial port using any serial terminal
program. CLI engine reside in CLI directory in libraries source tree. Please note that while unit connected
to PC via USB port it is visible as four consecutive virtual serial ports. Third port in a row will be debug
serial port.

Note:
* The Acienna VSCode extension uses the underlying PlatformIO debugging feature.

¢ PlatformlO now provides free JTAG debugging for all users.

Note: Visual Studio Code with installed Aceinna extension provides download of application image into device
memory via JTAG by clicking “Right Arrow” icon on the bottom of the screen. This is the fastest method to download
code and generally requires just a few seconds.

Note: The documentation and tutorials on this site assume use of the ST-LINK JTAG pod. The JTAG pod is shipped
with every OpenIMU developer’s kit.

3.2. Development Tools 19

OpenlMU Documentation

3.2.4 In-System Update

All OpenIMU hardware modules come shipped pre-configured with a special bootloader resident in their FLASH
memory. This bootloader allows for in-system code updates using a UART connection without using JTAG. Sample
code that utilizes this Bootloader can be found in the OpenIMU Python driver. An example of how to invoke the
Python driver for code loading is here.

The full details of the bootloader serial protocol is described below. These commands are executed using OpenIMU’s
standard serial interface:

Bootloader Initialization

A user can initiate bootloader at any time by sending ‘JI’ command (see below command’s format) to
application program. This command forces the unit to enter bootloader mode. The unit will communicate
at 57.6Kbps baud rate regardless of the original baud rate the unit is configured to. The Bootloader always
communicates at 57.6Kbps until the firmware upgrade is complete.

As an additional device recovery option immediately after powering up, every OpenIMU will enter a
recovery window of 100ms prior to application start. During this 100mS window, the user can send ‘JI’
command at 57.6Kbs to the Bootloader in order to force the unit to remain in Bootloader mode.

Once the device enters Bootloader mode via the ‘JI’ command either during recovery window or from
normal operation, a user can send a sequence of ‘WA’ commands to write a complete application image
into the device’s FLASH.

After loading the entire firmware image with successive ‘WA’ commands, a ‘JA’ command is sent to
instruct the unit to exit Bootloader mode and begin application execution. At this point the device will
return to its original baud rate.

Optionally, the system can be rebooted by toggling the power or toggling nRst (pull low and release) to
restart the system.

Firmware Update Commands
The commands detailed below are used for upgrading a new firmware version via the UART at 57.6Kbps.

Jump to Bootloader Command

Jump To Bootloader (‘JI’=0x4A49)
Preamble | Packet Type | Length

Payload | Termination

0x5555 0x4A49 0x00 CRC(U2)
The command allows system to enter bootloader mode.
Write App Command
Write APP (‘WA’=0x5741)
Preamble | Packet Type | Length | Payload | Termination
0x5555 0x5741 len+5 CRC(U2)

The command allows users to write binary sequentially to flash memory in bootloader mode.
The total length is the sum of payload’s length and 4-byte address followed by 1-byte data
length. See the following table of the payload’s format.

3.2. Development Tools 20

OpenlMU Documentation

WA Payload Contents
Byte Offset | Name Format Scaling Units Description
0 staringAddr | U4 bytes

The FLASH
word offset

to begin
writing data

4 byteLength | Ul . bytes
The word
length of the
the data to
write

5 dataByte0 Ul . . Flash data

6 dataBytel Ul . . Falsh data

4+byteLength| dataByte Ul . . Flash data

Payload starts from 4-byte address of flash memory where the binary is located. The fifth byte
is the number of bytes of dataBytess, but less than 240 bytes. User must truncate the binary to
less than 240-byte blocks and fill each of blocks into payload starting from the sixth-byte. See
the reference code, function write_block(), in Appendix F.

Jump to Application Command

Jump To Application (‘JA”’=0x4A41)
Preamble | Packet Type | Length | Payload | Termination
0x5555 0x4A41 0x00 CRC(U2)

The command allows system directly to enter application mode.

3.2.5 Python Interface

The OpenIMU Python driver supports communication with the hardware for data logging and device configuration
over the main user UART interface of the OpenIMU hardware. When run in server mode, it allows connection of the
OpenIMU with the developer’s website Aceinna Navigation Studio and its friendly GUI interface.

The Python driver attempts to automatically find a connected OpenIMU hardware by scanning available ports at
various baud rates. Once a connection is established, this connection is recorded in a file named connection.json. On
the next use of the driver, the driver will first attempt communication on this port speeding up connection time.

The Python driver reads a JSON file by default named openimu.json to understand the messages - both primary output
packets, as well as command/response type packets from the IMU. These can be customized by changing the JSON file
and the Python script will use that information to parse data (literally the byte stream) from the OpenIMU in real-time
appropriately.

Here are a few samples function you can call with the driver.

3.2. Development Tools 21

OpenlMU Documentation

Create a device and connect to it
imu = OpenIMU ()
imu.find_device ()

Get all parameters by issuing 'gA' command
imu.openimu_get_all_ param()

Update a parameter by issuing 'uP' command

See openimu. json for the parameter numbers

This example changes output packet rate to 100Hz
imu.openimu_update_param(4,100)

Save parameter changes by issuing 'sC' command
imu.openimu_save_config()

Log data for 1Hr

Data 1is logged into data directory with time of day string as default filename
imu.start_log()

time.sleep (3600)

imu.stop_log()

Update units firmware

bin file is stored in .pioenvs directory and created after compilation
the file most be moved to where the Python driver can find it
imu.openimu_upgrade_fw('myapp.bin')

You can also run the python code as a CLI interface to the unit. The CLI is defined in commands.py. If you have
installed the python driver with pip install, then navigate to a directory that contains a valid openimu.json for your
unit, and you can type:

Sopenimu

ConnectedOpenIMU300ZI - 0.0.1 SN:1808629112
>>help

Usage:

help : CLI help menu

exit : exit CLI

run : Operations defined by users

save : Save the configuration into EEPROM

connect : Find OpenIMU device

upgrade : Upgrade firmware

record : Record output data of OpenIMU on local machine

stop : stop recording outputs on local machine

server_start : start server thread and must use exit command to quit
get : Read the current configuration and output data

set : Write parameters to OpenIMU

>>

Note: As you develop code and customize your OpenIMU, you should also update openimu.json to keep it in
sync with your changes. This way both the Python driver and developers website, ANS, will function properly and
understand your units special programmed characteristics. The openimu.json file updates the Python driver functions
as well as the ANS website UL

3.2. Development Tools 22

OpenlMU Documentation

3.2.6 openimu.json Configuration File

The openimu.json file is used to describe the input and output messages and the configuration parameters of the Open-
IMU. An example file is shown below. The two sections that are edited during development are “userConfiguration”
and “userMessages”. These sections of the JSON file correspond to equivalent sections of code in the your custom
application. The description provided in the openimu.json file is used by the Python driver to support additional con-
figuration parameters and messages that you add to your unit. For example, if you add a custom output message,
the Python driver can automatically log it in a properly delimited CSV file format. In addition, the openimu.json file
provides user friendly names and features that then appear in the ANS website automatically. Using the same custom
output message as an example, the openimu.json file can describe the graphs and plots that are shown on the “Record”
page of the website. The openimu.json file lets you reuse driver and UI code with little or no modification.

In the main OpenIMU source tree, you will find the “user” directory for your project. This is where your custom IMU
app code is integrated and built. The files userConfiguration.h/userConfiguration.c describes the various configuration
parameters in the unit. The files userMessaging.h/userMessaging.c describes both the default and custom messages
for your OpenIMU app. These sections of c-code are then described in the “userConfiguration” and “userMessages”
section of in openimu.json as shown below. If you add a new parameter in userConfiguration.c, then you add a new
parameter in “userConfiguration” following the examples. Note each parameter must have a unique “paramld”. If you
add a unique output message, you will add that both to the “Packet Type” options array, and as a new “outputPacket”
in “userMessages”. When adding a new message the key point is to properly describe the payload in the order that the
data is sent in userMessaging.c.

{

"name" : "OpenIMU300-EZ",
"type" : "openimu",
"description" : "9-axis OpenIMU with triaxial rate, acceleration, and magnetic
—measurement",
"userConfiguration" : [
{ "paramId": 0, "paramType" : "disabled", "type" : "uint64", "name": "Data CRC"_
— }I
{ "paramId": 1, "paramType" : "disabled", "type" : "uint64", "name": "Data Size
;}" }I
{ "paramId": 2, "paramType" : "select", "type" : "int64", "name": "Baud Rate",
—"options" : [38400, 57600, 1152001},
{ "paramId": 3, "paramType" : "select", "type" : "char8", "name": "Packet Type",
— "options" : ["zl", "zT"]},
{ "paramId": 4, "paramType" : "select", "type" : "int64", "name": "Packet Rate",
— "options" : [200, 100, 50, 20, 10, 01},
{ "paramId": 5, "paramType" : "select", "type" : "int64", "name": "Accel LPF",
—~"options" : [50, 25, 40, 20, 10, 5, 21},
{ "paramId": 6, "paramType" : "select", "type" : "int64", "name": "Rate LPF",
—"options" : [50, 25, 40, 20, 10, 5, 21},
{ "paramId": 7, "paramType" : "select", "type" : "char8", "name": "Orientation",
— "options" : ["+X+Y+Z"]}
]I
"userMessages" : {
"inputPackets" : [
{
"name" : "pG",
"description" : "Get device serial number & factory ID",
"inputPayload" : {
}I
"responsePayload" : {
"type" : "string",
"name" : "Device ID and SN"

(continues on next page)

3.2. Development Tools 23

OpenlMU Documentation

(continued from previous page)

"name" : "gVv",
"description" : "Get user app version",
"inputPayload" : {},
"responsePayload" : {
"type" : "string",
"name" : "User Version"
}
}l
{
"name" : "gA",
"description" : "Get All Configuration Parameters",
"inputPayload" : {},
"responsePayload" : {
"type" : "userConfiguration",
"name" : "Full Current Configuration"
}
}l
{
"name" : "gP",
"description" : "Get a Configuration Parameter",
"inputPayload" : {
"type" : "paramId",
"name" : "Request Parameter Id"
}I
"responsePayload" : {
"type" : "userParameter",
"name" : "User Parameter"
}
}l
{
"name" : "sC",
"description" : "Save Configuration Parameters to Flash",
"inputPayload" : {},
"responsePayload" : {}
}l
{
"name" : "ubP",
"description" : "Update Configuration Parameter",
"inputPayload" : {
"type" : "userParameter",
"name" : "Parameter to be Updated”
}I
"responsePayload" : {
"type" : "paramId",
"name" : "ID of the Updated Parameter"
}
}
]I
"outputPackets" : [
{
"name": "z1",
"description": "Scaled 9-Axis IMU",
"payload" : [
{
"type" : "uint32",
"name" : "time",

(continues on next page)

3.2. Development Tools 24

OpenlMU Documentation

(continued from previous page)

1,
"graphs"
{

"unit"

thpell
"name"
llunit n

lltype n
"name n
"unit"

"type n
"name"
"unit"

"type"
"name"
llunit n

"type n
"name n
"unit"

"type n
"name n
"unit"

"type"
"name"
Hunit n

thpe n
"name"
"unit"

"type n
"name n
"unit"

Hname n
"units"
"xAxig"
n yAXeS "
"colors"
n yMaxll

"float",
"xAccel",
"Gll

"float",
"yAccel",
"G"

"float",
"zAccel",
"G"

"float",
"xRate",
lldeg/sll

"float",
"yRate" ,
"deg/s n

"float",
"zRate",
"deg/s"

"float",
"XMag" ,
"Gauss"

"float",
"yMag" y
"Gauss"

"float",
" ZMag" ,
"Gauss"

"Acceleration",
"m/s/s",
"Time (s)",
["xAccel",

["#FFOOOO",

80

"yAccel",

"zAccel"],
"#00FFO0", "#0000FF" 1,

(continues on next page)

3.2. Development Tools

25

OpenlMU Documentation

(continued from previous page)

"zRate"],
"#0000FF" 1,

"zRate"],
"#0000FF" 1,

{
"name" "Angular Rate",
"units" "deg/s",
"xAxis" "Time (s)",
"yAxes" : ["xRate", "yRate",
"colors" : ["#FFOOOO", "#OOFFOO",
"yMax" 400
}
1
}I
{
"name": "z2",
"description": "Arbitrary type Values",
"payload" [
{
"type" "uint32",
"name" "time",
"unit" : "s"
}I
{
"type" "uchar",
"name" "c",
"unit" """
}I
{
"type" "intle",
"name" "s",
"unit" . ""
}I
{
"type" "int32",
"name" : "i",
"unit" : ""
}I
{
"type" "inte4",
"name" "iiv,
"unit" ¢ ""
}I
{
"type" "double",
"name" "av,
"unit" "
}
]I
"graphs"
{
"name" "Angular Rate",
"units" "deg/s",
"xAxig" "Time (s)",
"yAxes" : ["xRate", "yRate",
"colors" : ["#FF0000", "#OOFFOO",
"yMax" 400
}
1
}I
{

(continues on next page)

3.2. Development Tools

26

OpenlMU Documentation

(continued from previous page)

"name": "z3",
"description": "Scaled 6-Axis IMU Values",
"payload" [
{
"type" "int",
"name" "timestamp",
"unit" "ms"
}I
{
"type" "float",
"name" "xAccel",
"unit" "m/s/s"
}I
{
"type" "float",
"name" "yAccel",
"unit" "m/s/s"
}I
{
"type" "float",
"name" "zAccel",
"unit" "m/s/s"
1y
{
"type" "float",
"name" "xRate",
"unit" "rad/s"
}I
{
"type" "float",
"name" "yRate",
"unit" "rad/s"
}I
{
"type" "float",
"name" "zRate",
"unit" "rad/s"
}
]I
"graphs"
{
"name" "Acceleration",
"units" "m/s/s",
"xAxis" "timestamp (ms)",
"yAxes" : ["xRate", "yRate", "zRate"],
"colors" : ["#FF0000", "#OOFFOO",
"yMax" 100
}
1
}
]
}I
"bootloaderMessages": [
{
"name" "JgIi",
"description" "Jump to Bootloader",
"inputPayload" {},

"#0000FF" 1,

(continues on next page)

3.2. Development Tools

27

OpenlMU Documentation

(continued from previous page)

"responsePayload" : {
"type" "ack",
"response" "Acknowledgement"
}
}y
{
"name" "JA",
"description" "Jump to App",
"inputPayload" {},
"responsePayload" : {
"type" "none",
"response" "Empty"
}
}y
{
"name" "WA",
"description" "Write App Block",
"inputPayload" : {
"type" "block",
"name" "4 byte block address
}I
"responsePayload" : {
"type": "ack",
"response" "Acknowledgement"

followed by up to 240 bytes data"

Note: Don’t modify the “bootloaderMessages” section of openimu.json. This section is used by the Python driver for
the in-system programming bootloader. It should not be changed

The easy way to get stared quickly is to purchase an OpenIMU Developer’s Kit from Aceinna https://www.aceinna.com
or a local distributor. The developer’s kit includes an OpenIMU300EZ inertial measurement unit, JTAG Pod, Eval
board, and precision test fixture. The precision test fixture makes it easy to properly align and install the IMU in a

target vehicle for integration testing.

3.2. Development Tools

28

https://www.aceinna.com

CHAPTER 4

Ready-to-Use Applications

OpenIMU ships with a number of ready to use, downloadable applications to help the user get started. These apps can
be compiled without modification and downloaded to your unit. All OpenIMU modules by default ship with the IMU
app described on the IMU App page.

To learn about ready to use apps available for immediate download to your OpenIMU, please see the the following
page: Aceinna Navigation Studio - Getting Started

Note: Use the browser back button to return to the OpenIMU documentation.

To install ready-made apps to your IMU, please make sure the user have installed the OpenIMU python driver de-
scribed in the “Development Tools - Python Interface” subsection and started the server.

To build a custom app, please follow the tutorial provided later in the OpenIMU documentation at “Tutorial - What
The User Needs to Know to Build The First Application”

The following Ready-To-Use Applications are available:
* Inertial Measurement Unit IMU) App
e Leveler App
¢ AHRS/VG Dynamic Attitude App
* GPS/INS App

4.1 IMU App

The App name, IMU, stands for Inertial Measurement Unit, and the name is indicative of the basic inertial measure-
ment unit functionality provided by this APP. The IMU App signal processing chain consists of high-speed sampling
of the 9-DOF sensor cluster (accelerometers, rate sensors, and magnetometers), programmable low-pass filters, and
the execution of built-in calibration models.

29

https://developers.aceinna.com/docs/install

OpenlMU Documentation

Additionally any configuration parameters settings such as axes rotation are applied to the IMU data. The 200Hz IMU
data is continuously being maintained inside the IMU APP, and is Digital IMU data is output over the UART port
at a selectable fixed rate (200, 100, 50, 25, 20, 10, 5 or 2 Hz). The digital IMU data is available in one of several
measurement packet formats including Scaled Sensor Data (‘z1’ Packet).

! u
: EEEEEEEEEEEN :
u u
: [R ™ =:||u1I'r|J|:m\'_'l.'pq.ﬂu':k|:|.ﬂ
u LR oS
: - = | i WLLEE (P L e 0 P
|] Uy ™ SamE g L
: u u MATSIPpA, Sarinl Proiood (AT
p ™ + LB | L
u] = P =
: u EiTis [] P SeucT = q-‘ -
p ™ B 7 T Aol mtion
p B Fizow wraTeEd =1 [aE——]
- = ey [— e
1
g N _I - L Mg = S ik (PSS il
- L . ™ wRHIZ E:-:
1 - e = Mg & 1
: - = o E<L] =
g N u 1 - I LRSTR Rcmrm | G It
p u aairriac [iw B rociarRsing)
: :mmf_m: 1
"] n 't u . .
B M ionSec | Bk Nole
I pppeeeennnn® =
[] 1 LS TS e
[] -
[] EiErL = i
! n
: Wiagre TR 1
1 u
||
1 u

4.2 Leveler App

Leveler App Description - To Be Provided

4.3 AHRS/VG Dynamic Attitude App

The Attitude and Heading Reference System (AHRS) and Vertical Gyro (VG) application supports all of the features
and operating modes of the IMU APP, and it links in additional internal software, running on the processor, for the
computation of dynamic roll, pitch. In addition to the Roll,Pitch and IMU data, the dynamic heading measurement
is optionally stabilized using the 3-axis magnetometer as a magnetic north reference. Roll, Pitch measurements are
often referred to as “VG” or Vertical Gyro measurements. When heading stabilized by a magnetometer is added, the
solution is often referred to as an “AHRS” or Attitude Heading Reference System. Hence the name of tis APP is
AHRS/VG APP.

At a fixed 200Hz rate, the VG/AHRS APP continuously maintains the digital IMU data as well as the dynamic roll,
pitch, and heading. As shown in diagram after the Sensor Calibration Block, the IMU data is passed to the Integration
to Orientation block. The Integration to Orientation block integrates body frame sensed angular rate to orientation at
a fixed 200 times per second within all of the OpenIMU Series products.

As also shown in the software block diagram, the Integration to Orientation block receives drift corrections from the
Extended Kalman Filter or Drift Correction Module. In general, rate sensors and accelerometers suffer from bias drift,
misalignment errors, acceleration errors (g-sensitivity), nonlinearity (square terms), and scale factor errors. The largest
error in the orientation propagation is associated with the rate sensor bias terms. The Extended Kalman Filter (EKF)
module provides an on-the-fly calibration for drift errors, including the rate sensor bias, by providing corrections to
the Integration to Orientation block and a characterization of the gyro bias state. In the AHRS/VG APP, the internally
computed gravity reference vector and the distortion corrected magnetic field vector provide an attitude reference

4.2. Leveler App 30

OpenlMU Documentation

measurement for the EKF when the unit is in quasi-static motion to correct roll, pitch, and heading angle drift and to
estimate the X, Y and Z gyro rate bias. The AHRS/VG APP adaptively tunes the EKF feedback gains in order to best
balance the bias estimation and attitude correction with distortion free performance during dynamics when the object
is accelerating either linearly (speed changes) or centripetally (false gravity forces from turns). Because centripetal and
other dynamic accelerations are often associated with yaw rate, the AHRS/VG APP maintains a low-passed filtered
yaw rate signal and compares it to the turnSwitch threshold field (user adjustable). When the user platform exceeds
the turnSwitch threshold yaw rate, the AHRS/VG APP lowers the feedback gains from the accelerometers to allow the
attitude estimate to coast through the dynamic situation with primary reliance on angular rate sensors. This situation
is indicated by the softwareStatus - turnSwitch status flag. Using the turn switch maintains better attitude accuracy
during short-term dynamic situations, but care must be taken to ensure that the duty cycle of the turn switch generally
stays below 10% during the vehicle mission. A high turn switch duty cycle does not allow the system to apply enough
rate sensor bias correction and could allow the attitude estimate to become unstable.

The AHRS/VG APP algorithm also has two major phases of operation. The first phase of operation is the attitude
initialization phase. During the initialization phase, the OpenIMU unit is expected to be stationary or quasi-static to
rapidly estimate the X, Y, and Z rate sensor bias, and the initial attitude. The initialization phase lasts approximately
2 seconds. After the initialization phase, the EKF algorithm in the AHRS/VP APP dynamically tunes the feedback
(also referred to as EKF gain) from the accelerometers and magnetometers to continuously estimate and correct for
roll, pitch, and heading (yaw) errors, as well as to estimate X, Y, and Z rate sensor bias.

4.3.1 The Definitions of The Output Packets of The VG/AHRS App

“a1” packet

The default VG/AHRS app output packet type is “al”, and it is defined in the following two tables.

(‘al”’ =0x6131)
Preamble Packet Type | Length | Payload | Termination
0x5555 0x6131 47 <CRC (U2)>

Payload:

4.3. AHRS/VG Dynamic Attitude App 31

OpenIMU Documentation

Byte Offset Name Format Notes
0 U4
System Timer of LSB First
sensors sampling msec
4 D
Above timer converted LSB First
to a double type second
12 Roll F4
LSB First
deg
16 Pitch F4
LSB First
deg
20 corrected X gyro F4
LSB First
deg/s
24 corrected Y gyro F4
LSB First
deg/s
28 corrected Z gyro F4
LSB First
deg/s
32 X Accel F4
LSB First
m/s/s
36 Y Accel F4
LSB First
m/s/s
40 Z Accel F4
LSB First
m/s/s
44 Operation mode' Ul LSB First
45 Linear accel switch’ Ul LSB First
46 Turn switch’ Ul LSB First

! Operation mode of the algorithm. 0 for waiting for the system to stabilize, 1 for initialzing attiude, 2 and 3 for VG/AHRS mode, and 4 for INS

4.3. AHRS/VG Dynamic Attitude App

32

OpenlMU Documentation

“a2” packet

If you want to output the yaw angle, you can choose the “a2” packet. For the VG app, the yaw angle is from integrating

the gyro rate, and for the AHRS app, the yaw angle gets corrected by magnetometer measurements.

(‘a2 =0x6132)

Preamble

Packet Type

Length

Payload

Termination

0x5555

0x6132

48

<CRC (U2)>

Payload:

mode. Please refer to the source code for details.

20 if linear acceleration is detected, 1 if no linear acceleration. Please refer to the source code for details.

3 Indicate if the filtered yaw rate exceeds the turn switch threshold. 1 yes, 0 no. Please refer to the source code for details.

4.3. AHRS/VG Dynamic Attitude App

33

OpenIMU Documentation

Byte Offset Name Format Notes
0 U4
System Timer of LSB First
sensors sampling msec
4 D
Above timer converted LSB First
to a double type second
12 Roll F4
LSB First
deg
16 Pitch F4
LSB First
deg
20 Yaw F4
LSB First
deg
24 corrected X gyro F4
LSB First
deg/s
28 corrected Y gyro F4
LSB First
deg/s
32 corrected Z gyro F4
LSB First
deg/s
36 X Accel F4
LSB First
m/s/s
40 Y Accel F4
LSB First
m/s/s
44 7 Accel F4
LSB First
m/s/s

4.3. AHRS/VG Dynamic Attitude App

34

OpenIMU Documentation

“e1” packet

If you further want to output the magnetometer measurements, you can choose the “el” packet.

(el’ = 0x6531)

Preamble

Packet Type

Length

Payload

Termination

0x5555

0x6531

75

<CRC (02)>

Payload:

4.3. AHRS/VG Dynamic Attitude App

35

OpenIMU Documentation

Byte Offset Name Format Notes
0 U4
System Timer of LSB First
sensors sampling msec
4 D
Above timer converted LSB First
to a double type second
12 Roll F4
LSB First
deg
16 Pitch F4
LSB First
deg
20 Yaw F4
LSB First
deg
24 X Accel F4
LSB First
g
28 Y Accel F4
LSB First
g
32 Z Accel F4
LSB First
g
36 X gyro F4
LSB First
deg/s
40 Y gyro F4
LSB First
deg/s
44 Z gyro F4
LSB First
deg/s
48 X gyro bias F4
4.3. AHRS/VG Dynamic Attjtude App LSB First 36
deg/s
52 Y gyro bias F4

OpenlMU Documentation

Note: In AHRS mode for proper operation of the stabilized heading measurement, the AHRS/VG APP uses infor-
mation from the internal 3-axis digital magnetometer. The AHRS APP must be installed correctly and calibrated for
hard-iron and soft iron effects to avoid any system performance degradation.

4.4 GPS/INS App

The INS APP supports all of the features and operating modes of the VG/AHRS APP, and it includes additional
capability of interfacing with an external GPS receiver and associated software running on the processor, for the
computation of navigation information as well as orientation information. The APP name, GPS/INS APP, stands
for Inertial Navigation System, and it is indicative of the navigation reference functionality that APP provides by
outputting inertially-aided navigation information (Latitude, Longitude, and Altitude), inertially-aided 3D velocity
information, as well as heading, roll, and pitch measurements, in addition to digital IMU data.

The processor performs time-triggered trajectory propagation at 100Hz and will synchronize the sensor sampling with
the GPS UTC (Universal Coordinated Time) second boundary when available.

As with the AHRS/VG APP, the algorithm has two major phases of operation. Immediately after power-up, the INS
APP uses the accelerometers to compute the initial roll and pitch angles. During the first 60 seconds of startup, the
INS APP should remain approximately motionless in order to properly initialize the rate sensor bias. The initialization
phase lasts approximately 60 seconds, and the initialization phase can be monitored in the operation mode transmitted
by default in each measurement packet.

After initialization phase, the OpenIMU continuously maintains the digital IMU data; the dynamic roll, pitch, and
heading data; as well as the navigation data. The body frame sensed angular rate is first integrated to orientation at
a fixed N times per second. For improved accuracy and to avoid singularities when dealing with the cosine rotation
matrix, a quaternion formulation is used in the algorithm to provide attitude propagation. Using the attitude, the body
frame accelerometer signals are rotated into the NED frame and integrated to velocity. And then, NED velocity is
integrated to get position. At this point, the data is blended with GPS position and velocity data in the EKF, and output
as a complete navigation solution.

The INS APP blends GPS derived heading and accelerometer measurements into the EKF update depending on the
health and status of the associated sensors. If the GPS link is lost or poor, the Kalman Filter solution stops tracking
accelerometer bias, but the algorithm continues to apply gyro bias correction and provides stabilized angle outputs.
The EKF tracking states are reduced to angles and gyro bias only. The accelerometers will continue to integrate
velocity, however, accelerometer noise, bias, and attitude error will cause the velocity estimates to start drifting within
a few seconds. The attitude tracking performance will degrade, the heading will freely drift, and the filter will revert
to the VG only EKF formulation. The UTC packet synchronization will drift due to internal clock drift.

4.4.1 Quick Start

In this section, we explain how to get the INS app running with an external GPS receiver that outputs NMEA GGA,
VTG and RMC messages. The default baud rate for UART is 115200. Although NMEA is not recommended in
our INS app due to lack of some required information of the algorithm, it is chosen here because its popularity and
simplicity. Our GPS driver supports NMEA message decoding, so you don’t need to write a single line of code.

It is assumed that you are using our OpenIMU300ZI EVK.
Connect the GPS receiver to the EVK

In the following picture, the onboard 3.3V and GND are used to power the GPS receiver. You can also choose your
own power supply.

4.4. GPS/INS App 37

OpenlMU Documentation

g
(=]
38
=
(=]
<9
[=
2
(=]

-1dS

Zt[e=1)
‘Il-f- (g cufER)IZa30

waB80] 44

(o]

s 10060

1d
ou®

:-';J;_immaw ‘

e

Vet Tx to EVK Rx
aceiver Rx to EVK Tx

Burn the INS App into The Unit

The unit has a built-in IMU app. The INS app need loaded by yourself. There are two recommended ways to do that.

Using the Python Driver

This is for people who only want to use the precompiled bin file.

The Python Driver loads the INS app by the built-in bootloader of the OpenIMU300ZI unit. Please follow steps below.
1. Connect the unit to the Python Driver.

Please refer to Python Interface. If the unit is successfully connected, you will see information like this.

.! Select C:\Users\liyifan\Documents\WeChat Files\silva_lee_\FileStorage\File\2019-08\server_win32 1721.exe

1 din T on fi from github, o waiting for a while

2. Visist the App page of our Developer Site.

4.4. GPS/INS App 38

OpenlMU Documentation

You can get access to all available apps in our Developer Site. The OpenIMU300ZI INS app is the one
you need.

MNov-28-2018 v 1.0.0

OpenIMU300 INS Application

Enables the OpenIMU300 to operate as a
Inertial Navigation System (INS),
estimating inertial states

By joe motyka

DOWNLOAD .bin UPGRADE

3. Burn the INS app.
Click “UPGRADE” and wait for it to complete.

Nov-28-2018 v1.0.0

OpenIiMU300 INS Application

Enables the OpenIMU300 to operate as a
Inertial Navigation System (INS),
estimating inertial states

By joe motyka

DOWNLOAD .bin

Using Aceinna Extension in VS Code

If you want to modify our open-source code, you may want to try this way.

Please first refer to PC Tools Installation to install required tools and then to Aceinna Extension for basic usage of the
extention. After importing the project of the INS app, you can modify the code, compile the project and upload the

bin file to the unit via ST-Link.

4.4. GPS/INS App

39

https://developers.aceinna.com/code/apps

OpenlMU Documentation

W) SR EEE O BEG) BBV EIG) ERD) EEm o EEH) Aceinna Home - Visual Studio Code

@ Aceinna Home X

Import Project Example

INS

A Kalman filter based algorithm that uses rate-sensors to propagate attitude (roll, pitch, and
heading angles) forward in time and accelerometers and magnetometers as references, to
correct for bias in the rate-sensor signal. Additionally, the algorithm uses accelerometer data to
propagate velocity and position and velocity (in the North/East/Down-Frame) and GPS data to
correct for errors and estimate bias in the accelerometer signals.

Get and Visualize the Output

1. Connect the unit to the Python Driver.
2. Visit our Developer Site.

You can see the detailed information about the unit.

4.4. GPS/INS App

40

https://developers.aceinna.com/devices/record-next

OpenlMU Documentation

B openiMU Monit x +

<« C 0 @ developers.aceinna.com/devices/record-next

]

@NNA =

@ Getting Started > B

OpenIMU Monit connecTeD
Devices v
@ IMU Info .
> Connect OpeniMU300ZA Geo Map
MU
RTK 1808629122

5020-3885-01

@ RTK Network >
App Version

Simulation > BINS1.1.0'

«» Code > Firmware Version
11

" Forum > 0

News R Baud Rate
230400
Packet Type
€2
Packet Rate

s
SETTINGS ~

~ 10 - >

Choose “Geo Map” as output, and click the play button, and you can see the live position on the map.

- u] X

®ax Oem @ :

B openiMu Monit x +
<« C 0 @ developers.aceinna.com/devices/record-next
il
(AczINNA
Getting Started > B
@ OpenIMU Monit connecTeD
Devices v
@ IMU Info e
Conne OpenIMU300ZA Geo Map
o My
RTK 1808629122
My Fil
5020-3885-01
@ RTK Network >
Simulation >
<> Code > Firmware Version
1.1.0
= Forum >
& News N Baud Rate

230400

Packet Type
e

Packet Rate
2

Geo Map
Latitude : 31.508352

Longitude : 120.401382

4.4.2 How to Add Support of a New GPS Receiver Protocal

Currently we support NMEA, uBlox Nav-PVT and NovaTel Bestpos/Bestvel. If your receiver protocal is not in the
list, it is easy for you to add code to decode a new protocol. Let’s take uBlox nav-pvt for example to explain how to

do this.

1. define the name (UBLOX_BINARY) of the protocol in GlobalConstas.h.

// Choices for GPS protocol
typedef enum{

AUTODETECT

UBLOX_BINARY

type

= 71’
= 0,

(continues on next page)

4.4. GPS/INS App

41

OpenlMU Documentation

(continued from previous page)

NOVATEL_BINARY = 1,

NOVATEL_ASCII = 2,

NMEA_TEXT = 3,

DEFAULT_SEARCH_PROTOCOL = NMEA_TEXT, // 3

SIRF_BINARY = 4,

INIT_SEARCH_PROTOCOL = SIRF_BINARY, ///< 4 max value, goes through each,
—until we hit AUTODETECT

UNKNOWN = OxFF
} enumGPSProtocol;

2. In driverGPSAllEntrance.c, add this new protocol in SetGpsProtocol(). After this, the new protocal can be set in
Aceinna Navigation Studio Web GUI.

BOOL SetGpsProtocol (int protocol, int fApply)
{
switch (protocol)
{
case NMEA_TEXT:
case NOVATEL_BINARY:
case UBLOX_BINARY:
break;
default:
return FALSE;
}
if (fApply)
{
gGpsDataPtr->GPSProtocol = protocol;

return TRUE;

3. In driverGPS.c, call the routine to decode this protocol.

switch (GPSData—->GPSProtocol) {

case NMEA_TEXT:
parseNMEAMessage (tmp, gpsMsg, GPSData);
break;

case NOVATEL_BINARY:
parseNovotelBinaryMessage (tmp, gpsMsg, GPSData);
break;

case UBLOX_BINARY:
parseUbloBinaryMessage (tmp, gpsMsg, GPSData);
break;

default:
break;
}

4. Implement the decoding routine (parseUbloBinaryMessage()) in a proper file. For this example, it is implemented
processUbloxGPS.c.

4.4.3 The Definition of The Deaulft Output Packet of The INS App

In the section Get and Visualize the Output, we can get INS app output data via the Python driver. The Python driver
receives output from the unit, deocde the output packts and then feed decoded results to the Web GUIL. If you want

4.4. GPS/INS App 42

OpenlMU Documentation

to decode the output by yourself, you need to know the structure of the output packet, which is detailed in OpenIMU
UART Messaging. The default INS app output packet type is “e2”, and it is defined in the following two tables.

(‘e2’ =0x6532)
Preamble Packet Type | Length | Payload | Termination
0x5555 0x6532 123 <CRC (U2)>

Payload:

4.4. GPS/INS App 43

OpenIMU Documentation

Byte Offset Name Format Notes
0 U4
System Timer of LSB First
sensors sampling msec
4 D
Above timer converted LSB First
to a double type second
12 Roll F4
LSB First
deg
16 Pitch F4
LSB First
deg
20 Yaw F4
LSB First
deg
24 X acceleration F4
LSB First
g
28 Y acceleration F4
LSB First
g
32 Z acceleration F4
LSB First
g
36 X acceleration bias F4
LSB First
m/s/s
40 Y acceleration bias F4
LSB First
m/s/s
44 Z acceleration bias F4
LSB First
m/s/s
48 X gyro F4
4.4. GPS/INS App LSB First 44
deg/s
52 Y gyro F4

OpenlMU Documentation

4.4.4 Synchronization to One PPS GPS Signal

The OpenIMU300 has the ability to synchronize a One PPS signal provided by the GPS receiver. The first step in the
process is to connect the signal to the correct input pin on the OpenIMU300. In this case, Pin 2 serves as the input as
described in Connector Pinout.

See synchronization to external clock signals for more information on how to use the 1 PPS synchronization signal.

4.4.5 About the GNSS/INS Fusion Algorithm

In the INS app, an 16-state extended Kalman filter is implemented to process measurements from a GPS receiver and
an IMU unit. If you want to know more details about the algorithm, please refer to EKF Algorithm.

Note: If you have any question, please search or post a new topic on Aceinna Forum.

! Operation mode of the algorithm. 0 for waiting for the system to stabilize, 1 for initializing attitude, 2 and 3 for VG/AHRS mode, and 4 for
INS mode. Please refer to the source code for details.

20 if linear acceleration is detected, 1 if no linear acceleration. Please refer to the source code for details.

3 Indicate if the filtered yaw rate exceeds the turn switch threshold. 1 yes, 0 no. Please refer to the source code for details.

4.4. GPS/INS App 45

../300ZI/pinout.html#connector-pinout-including-gps-sensor-interface
../hw_sw_interface/synchronization.html#synchronization-to-external-clock-signals
https://forum.aceinna.com

CHAPTER B

Tutorial - What The User Needs to Know to Build The First Application

OpenIMU Core

The OpenIMU Core is the foundation for the Platform application and all other example and custom
applications. However, it is not supplied as a separate application. The OpenIMU Core provides the Board
Support Package (BSP), FreeRTOS, command line interface capability, filters, GPS interface capability,
math functionality, and various utilities, including the base examples for the C-language main function
and the data acquisition functionality.

EZ Embed Example Applications

The following applications are implicitly based on use of an EZ Embed* OpenIMU units, such as the
OpenIMU300ZI and OpenIMU330BI.

To get you acquainted with the OpenIMU environment, let’s walk through the development of the follow-
ing applications:

IMU Application

The term Inertial Measurement Unit (IMU) refers to a device that returns calibrated inertial-sensor data.
This application forms the backbone of all other example applications as each requires inertial measure-
ments to generate other results.

Static-Leveler Application

The Static-Leveler application uses accelerometer readings to measure the local gravity-field and com-
pute the two-axis attitude (roll and pitch angles) of a body relative to the local-level frame. A Leveler
application could be used to provide stabilization for cameras and other systems that require linear and
rotational stability.

VG&AHRS Applications

The Vertical Gyro (VG) application and the Attitude and Heading Reference System (AHRS) application
use rate-sensors, accelerometers, and (for the AHRS application) magnetometers to compute the attitude
and heading of a body in space. Rate-sensors are used to propagate the attitude forward in time at high
output data-rates (ODR) while accelerometers and magnetometers act as references, correcting for rate-
sensor biases and attitude errors.

INS Application

46

OpenlMU Documentation

The Inertial Navigation System (INS) application supports all of the features and operating modes of the
VG&AHRS applications. In addition it includes the additional capability of interfacing with an external
GPS receiver and associated software running on the processor for computation of navigation position
information as well as orientation information.

Robust CAN Example Applications

The CAN example applications are implemented for OpenIMU300RI unit with CAN interface.
Next example applications available for OpenIMU300RI unit:

* IMU application which are using SAE J1939 Messaging Standard.
* VG_AHRS application which are using SAE J1939 Messaging Standard.
* INS application which are using SAE J1939 Messaging Standard.

5.1 OpenIMU Core Details

All of the example applications and any custom applications are based on the OpenIMU Core firmware. The elements
provided by the OpenIMU Core that are available to all example applications are as follows:

* Board Support Package (BSP) and FreeRTOS

¢ Default Pre-Filtering and Calibration Functions

e Default Data Acquisition Functions

* Default Message Functions

 Default Serial Debugging Functions

* Bootloader

* Python-Based Message Decoder

 Data Capture Functions Supporting the Aceinna Navigation Studio

Details of those elements are described in the following pages.

5.1.1 FreeRTOS & Board Support Package

FreeRTOS

The applications for all OpenIMU300 units use the FreeRTOS Real-Time Operating System (https://www.freertos.
org), while OpenIMU330 units uses a simple real-time scheduler. FreeRTOS is very widely used, as it is feature-rich,
has a small footprint, and can be used in commercial application without having to expose intellectual property.

FreeRTOS is licensed under the MIT Open Source License (https://www.freertos.org/a00114.html).
The critical feature of FreeRTOS:
* Scheduling Options
— Pre-emptive
— Co-operative
— Round robin with time slicing

¢ Fast task notifications

5.1. OpenIlMU Core Details 47

https://www.freertos.org
https://www.freertos.org
https://www.freertos.org/a00114.html

OpenlMU Documentation

» Configurable & scalable with a 6K to 12K ROM footprint
* Mutexes & semaphores
— Mutexes with priority inheritance
— Recursive mutexes
— Binary and counting semaphores
 Chip and compiler agnostic
* Very efficient software timers
* Can be configured to never completely disable interrupts
» Easy to use API
* Easy to use message passing

Board Support Package - To Be Provided

5.1.2 Default Pre-Filtering and Calibration Functions

Several built-in digital filters are available to the user to provide additional filtering. In particular, a selection of second-
order Butterworth low-pass filters are provided. Butterworth filters were chosen for their maximally flat passband and
straight-forward frequency responses. Available cutoff-frequencies are:

* 50Hz

* 40 Hz

* 25Hz

* 20Hz

* 10Hz

* 5Hz

* 2Hz

¢ 0 Hz (Unfiltered)

In the firmware, these filter are implemented using fixed-point math (which operate on sensor counts, not floating-point
values). This was done done to take advantage of the speed associated with integer-math operations.

Built-in filters are selected in several different ways:

1. Cutoff frequencies can be set in the default user-configuration structure, UserConfigurationStruct. This is the
approach taken in this example.

2. The configuration can be changed (either temporarily or permanently) using the Aceinna Navigation Studio
interface.

3. Commands can be sent to the unit over the serial interface. This enables the cutoff frequency to be changed
during operation, if desired.

Calibration:

Once filtered, the OpenIMU firmware then applies calibration data to the sensor counts, compensating for temperature-
related bias effects, sensor scale-factors, and misalignment.

5.1. OpenIlMU Core Details 48

OpenlMU Documentation

5.1.3 Default Data Acquisition Functions

Contents

* Acquiring Sensor Data

OpenIMU makes data-acquisition simple by reducing the steps required to get high-quality, inertial sensor data. Sensor
drivers, filtering, and calibration are handled without the need for additional user input.

The main routine controlling sensor sampling and processing is TaskDataAcquisition. This task calls the routines that
acquire sensor measurements, filter the data, and apply calibration. In particular, the task calls the following, which
provides functions to acquire sensor data:

inertialAndPositionDataProcessing (dacgRate) ;

After completion of the sensor processing steps, it then calls the algorithm that operates on sensor readings to create
processed output.

Acquiring Sensor Data

Inside inertialAndPositionDataProcessing() several getter-functions are provided. These functions obtain sensor data
directly from the sensor data-buffers. Function names, described in the following table, were chosen to make the task
of each function clear.

Table 1: Sensor Measurement Getter Functions

Getter Function Description Units
GetAccelData_g() Obtain accelerometer data | [g]
GetAccelData_mPerSecSq() [
GetRateData_radPerSec() Obtain rate-sensor data [

GetRateData_degPerSec() [°/s]
[
[

S
GetMagData_G() Obtain magnetometer data | [G]
GetBoardTempData() Obtain temperature data °C]

Note: Most inertial algorithm development will use [m/s?], [r/s], and [G]. However getters that provide accelerom-
eter and rate-sensor data in [g] and [°/s] are also available for the designer who chooses to work in these units.

These getters work by populating the array whose address is provided as an argument to the function. In this ex-
ample, the functions load the data directly into the data-structure elements gIMU.accel_g, gIMU.rate_degPerSec,
gIMU.mag_G, and gIMU.temp_C.

Note: Structure elements (accel_g, rate_degPerSec, etc.) are all defined as doubles in the data structure created in
UserMessaging.h. This is done to match the datatype required by the getter functions, described above.

// IMU data structure

typedef struct {
// Timer output counter
uint32_t timerCntr, dTimerCntr;

// Algorithm states

(continues on next page)

5.1. OpenIlMU Core Details 49

OpenlMU Documentation

(continued from previous page)

double accel_gl[3];
double rate_degPerSec[3];
double mag_GI[3];
double temp_C;
} IMUDataStruct;

extern IMUDataStruct gIMU;

5.1.4 Default Message Functions

Contents

» Serial Message Definition
* UserMessaging.h Modifications
» UserMessaging.c Modifications

* Default Configuration Settings

o Testing using Serial Terminal Emulator

Serial Message Definition
A streaming, serial message can be generated by the OpenIMU platform. In this example, a message matching the
requirements, defined earlier, is created. It consists of:

1. An integer counter, representing time in [ms]

2. A floating-point representation of time, in [s]

3. Accelerometer readings, in [g]

4. Rate-Sensor readings, in [°/s]

5. Magnetometer readings, in [G]

6. Board temperature, in [°C]

To generate this output, a serial-message was created in UserMessaging.c and UserMessaging.h. In the firmware, the
message is given the name, USR_OUT_SCALED], along with the packet code “s1” (with lower-case S representing
scaled).

To form the message, the first step is to define the message components and determine the total number of bytes the
message will occupy. The components of the message, variable type, and number of bytes are listed in the following
table:

5.1. OpenIlMU Core Details 50

OpenlMU Documentation

Table 2: User-Defined Serial Message Components

Message Com- Description Number of Total
ponent Variables Bytes
Type Bytes
Integer counter uint32_t 4 1 4
Time variable double 8 1 8
float 4 12
Accelerometer
Readings (3 axis)
float 4 3 12
Rate-Sensor
Readings (3 axis)
float 4 3 12
Magnetometer
Readings (3 axis)
float 4 1 4
Board-Temperature
Readings (3 axis)

This shows that the payload section of the output message (not including preamble, message type, or CRC) consists

of 52 bytes.

Adding this message to the firmware requires modifications to two files: UserMessaging.c and UserMessaging.h.

UserMessaging.h Modifications

The packet code and number of bytes must be added to UserMessaging.h. This requires adding the output packet code

to the packet-type enum variable:

// User output packet codes, change at will
typedef enum {
USR_OUT_NONE = 0, // O

USR_OUT_TEST, // 1
USR_OUT_DATAL, // 2
USR_OUT_DATA2, // 3
// add new output packet type here, before USR_OUT_MAX
USR_OUT_SCALED1, // 4

USR_OUT_MAX
} UserOutPacketType;

and creating a #define identifier to hold the payload length

#define USR_OUT_SCALED] PAYLOAD LEN (52)

These can be found in the IMU example code.

5.1. OpenIlMU Core Details

51

OpenlMU Documentation

UserMessaging.c Modifications

With the above additions to UserMessaging.h made, the output message can be added to UserMessaging.c, completing
the process. To accomplish this, add a new case to the switch-statement found in HandleUserOutputPacket() using the
output name added to UserMessaging.h:

case USR_OUT_SCALED1:

{
// The payload length (NumOfBytes) is based on the following:

// 1 uint32_t (4 bytes) = 4 bytes
// 1 double (8 bytes) = 8 bytes
// 3 floats (4 bytes) = 12 bytes
// 3 floats (4 bytes) = 12 bytes
// 3 floats (4 bytes) = 12 bytes
// 1 floats (4 bytes) = 4 bytes
[/ =================================
// NumOfBytes = 52 bytes

*payloadLen = USR_OUT_LEV1_PAYLOAD_LEN;

// Output time as represented by gIMU.timerCntr (uint32_t
// incremented at each call of the algorithm)

uint32_t xalgoData_l = (uint32_t~*) (payload);
~algoData_l++ = gIMU.timerCntr;

// Output a double representation of time generated from
// gLeveler.itow

double *algoData 2 = (doublex) (algoData_1);
xalgoData_2++ = .0e-3 % (double) (gIMU.timerCntr) ;

// Set the pointer of the sensor array to the payload

float *algoData 3 = (float«) (algoData_2);
~xalgoData_3++ = (float)gIMU.accel_g[X_AXIS];

~algoData_3++ = (float)gIMU.accel_g[Y_AXIS];
xalgoData_3++ = (float)gIMU.accel_g[Z_AXIS];

~algoData_3++ = (float)gIMU.rate_degPerSec[X_AXIS];
xalgoData_3++ = (float)gIMU.rate_degPerSec[Y_AXIS];
xalgoData_3++ = (float)gIMU.rate_degPerSec[Z_AXIS];
xalgoData_3++ = (float)gIMU.mag_G[X_AXIS];
xalgoData_3++ = (float)gIMU.mag_G[Y_AXIS];
~algoData_3++ = (float)gIMU.mag_G[Z_AXIS];
xalgoData_3++ = (float)gIMU.temp_C;

}

break;

Data is appended to the payload array using pointers. This enables variables of different datatypes to fit into the
payload array (defined as an array of 8-bit unsigned integers); this approach is highlighted in the previous code snippet
and is done by generating a pointer of the desired type to a typecast version of the payload address. In the example
above, 32-bit unsigned integer data is appended to the payload, followed by double and floating-point variables.

Finally, the packet type must be added to the switch-statement in setUserPacketType() to allow the firmware to select
the packet:

case USR_OUT_SCALED1: // packet with arbitrary data
_outputPacketType = type;
_userPayloadLen = USR_OUT_SCALED1_PAYLOAD_LEN;

(continues on next page)

5.1. OpenIlMU Core Details 52

OpenlMU Documentation

(continued from previous page)

break;

and the packet-code must be added to the list of user output packets, userOutputPackets.

// packet codes here should be unique -
// should not overlap codes for input packets and system packets
// First byte of Packet code should have value >= 0x61

usr_packet_t userOutputPackets[] = {

// Packet Type Packet Code
{USR_OUT_NONE, {0x00, 0x00}},
{USR_OUT_TEST, "zT"},

{USR_OUT_DATAI, "z1my,
{USR_OUT_DATAZ2, "z2my,

// place new type and code here
{USR_OUT_SCALED1, "s1vy,

{USR_OUT_MAX, {Oxff, O0xff}}, // "

}i

These changes are found in UserMessaging.c.

Default Configuration Settings

To make the “s1” serial message (created previously) the default output, make changes to the default user-configuration
structure found in UserConfiguration.c:

// Default user configuration structure
// Saved into EEPROM of first startup after reloading the code
// or as a result of processing "rD" command

// Do Not remove - just add extra parameters if needed
// Change default settings if desired
const UserConfigurationStruct gDefaultUserConfig = {
.dataCRC = 0,
.dataSize = sizeof (UserConfigurationStruct),
.userUartBaudRate = 115200,
.userPacketType = "sl",
.userPacketRate = 10,
.lpfAccelFilterFreq = 25,
.lpfRateFilterFreq = 25,
.orientation = "+X+Y+Z"

// add default parameter values here, if desired

Note: userPacketType was set to “s1” to cause the new packet to be broadcast by default. Additionally, the desired
message baud rate and message rate are set to 115.2 kbps and 10 [Hz], respectively. Finally, the accelerometer and
rate-sensor filters are set to 25 Hz.

Testing using Serial Terminal Emulator

At this point, the IMU application has been implemented and the output messaging created. Build and upload the
firmware to the OpenIMU. A serial terminal (such as TeraTerm) can be used to verify if a message is being generated
by the device. In the following figure, output messaging creation can be verified by searching for the string “UUs1”.

5.1. OpenIlMU Core Details 53

OpenlMU Documentation

If present, the message is being generated; whether the message is populated correctly requires the use of additional
tools.

F IEI |
Tera Term - [disconnected] VT E‘_lg

Eile Edit Setup Control Window Help

14 2 8y a0 < e U7
|oos@7 |[L]|~ "' ip=¥ F=U2eUrB>m>ii
Ta€AHUUs14Z{D~? Tl owl@ 27 [19Z . 1D | =p

_?I:EFIRUUSI‘II:]"ﬁQq SulPEd ;= iq32=?U—CcB=135j>41
TaEABEUUs14n][Bz«Goul th’ 179E 1~

T3
ToEA [edlUs14x]b>
Fpsdul”
lIRE1@? &= a?ul ==
?aEfdells14{lsuBRC?R|| };5qY >2=

cA2YUs1i4
1 <87 B2 24
ToEAdsUlUs14{[R7 65ul@FI |[XBRIIE6 =« K =<xd >Qm>ky
FaEAZqUls14a]leGB=Eni
HME=n7K<{n0=Is>td>™y
aEhaills 14-"
l.l.hle||1< I='/>LE>|" Tp=CEul
E, Uyl ||+>75 14-H|'gffffEuE Lo

'?u:EFIU'UU 14=||||-J(\'?Eul3
1 Bt - <ORUTOMH [P
7aEATHUUS141Y 507 €uwl]| L2]|PL

=|l-4iq r°>hh>1'x'

G 511474 >rOYN
?uen1ruu_14nll.—._«cﬁe-r@@-z||L[" JeHEZIIND>
| L
. rachr WU tullt =
et | b
94795 KI|_3G=n>_K>2
2aEA_UU_143[3333308 L | 77€} 3+ ¥-B= BK=Y 5 = | UH?

Ta€ANUU_14={HJ ¢sn2
@>>34Dy ¢ [Cor-etme

FoEn U_14- n2a Z
oeA-HIU_14 -{lq3n-2a e oy LT
QERLE RS
ToCApulls14FHEz @Y 79z
ma<, 1-

u |
>HE>

FocAr?Uls14H—=

{In 86 || =]| by 24 2 KR Lt 32 575

Fig. 1: Test of Serial Message Output

Note: In the above figure the message preamble sometimes displays as “UU_1". This is solely a TeraTerm glitch.
Other serial terminal programs (such as CoolTerm) do not show such behavior.

5.1.5 Default Serial Debugging Functions

Contents

e Generating Debug Messages

e Compile and Test

Generating Debug Messages

Creating the Message:

5.1. OpenIlMU Core Details 54

OpenlMU Documentation

Debug messages, using the built-in debugging capability of the OpenIMU platform, are added to the IMU application
to verify that the firmware obtains the correct sensor reading; the complete implementation is found in dataProcessin-
gAndPresentation.c in the IMU application code. The relevant debugger calls are:

DebugPrintFloat ("Time: ", 0.001 *» gIMU.timerCntr, 3);
DebugPrintFloat (", AccelZ: ", gIMU.accel_gl[Z_AXIS], 3);
DebugPrintFloat (", RateZ: ", gIMU.rate_degPerSec[Z_AXIS], 3);
DebugPrintFloat (", MagX: ", gIMU.mag_G[X_AXIS], 3);

DebugPrintFloat (", Temp: ", gIMU.temp_C,2);
DebugPrintEndline () ;

In the output message, z-axis acceleration and rate-sensor measurements, provided in [g] and [°/s], are obtained along
with x-axis magnetic-field readings (in [G]) and board-temperature (in [°C]). This subset of sensor information is
selected to test the output of all sensors, while keeping the size of the debug message small.

Arguments to DebugPrintFloat() consist of:
1. A character-string describing the output message
2. The floating-point value to be output
3. The number of significant digits in the output message

In this example, only DebugPrintFloat() is used to output a debug message, other debug message functions are avail-
able. In particular, the following messages (provided in debug.c) form the complete list:

DebugPrintString();
DebugPrintInt () ;
DebugPrintLongInt () ;
DebugPrintHex () ;
DebugPrintFloat () ;
DebugPrintEndline () ;

Compile and Test

The final step is to build and upload the firmware to the OpenIMU hardware using the PIO framework. When complete,
use a terminal program (such as TeraTerm in Windows) to connect to the appropriate COM port to assess if the program
is operating as expected.

Debug Communication Settings:

Debug messages are provided as serial messages over the third port of the OpenIMU platform. When connected to a
PC, the device generates four COM ports. In this case, the ports are 40, 41, 42, and 43. The first COM port is the serial
messaging port (discussed in the Platform Communications section), the second port can be used for serial inputs to
the platform (such as GPS), and the fourth is unconnected.

The nominal serial baud-rate setting is 38.4 kbps. This can be set to other rates, such as 57.6 kbps, 115.2 kbps, or 230.4
kbps via the argument to InitDebugSerial Communication(), found in main.c. For the IMU application, this value was
changed to 230.4 kbps.

System Testing using Debug Communications:
To test the OpenIMU output, perform the following:
1. Place the unit on a level table top
2. With the unit sitting flat, the z-axis acceleration will be close to -1.0 [g]

3. Rotate the unit clockwise (about the positive z-axis) to generate a positive z-axis angular-rate

5.1. OpenIlMU Core Details 55

../../EVB/overview.html#communication-with-imu-from-pc

OpenlMU Documentation

4. Orient the unit so the y-axis is aligned with magnetic-north. This results in an x-axis magnetic-filed reading close
to zero [G]. Orienting the unit’s x-axis in any other compass direction will result in a non-zero magnetic-field
reading that increases until the axis is pointed along the north/south direction, at which it reaches its maximum
value.

5. Temperature readings reflect values slightly higher than the ambient temperature, as the readings reflect the
temperature of the electronics.

The results of these statements are found in the following figure:

r IEI I |
Tera Term - [disconnected] VT E‘_lg

Eile Edit Setup Centrol Window Help

94.258, AccelZ: —1.882, RateZ: -A.844, Magi: B.287,. Temp: 29.73
24.588. : —-1.88 RateZ: B.844, Magi: B.291, Temp: 29.72
24,758, a RateZ: A.A48. Magi: A.287,. Temp: 29.72
95 .8688. RateZ: B.B65, Magh: B.286, Temp: 29.72
95.258, RateZ: —-B.653, Magi: B.289. Temp: 29.72
925.588. RateZ: —-B.014, Magi: B.287. Temp: 29.73
95.758, RateZ: —-B.018, Magi: B.289. Temp: 29.73
76 .8688. RateZ: —-B.828, Magi: B.287. Temp: 29.73
96 .258, RateZ: -B.887, Magi: A.289. Temp: 29.73
76 .588. o RateZ: B.845, Magi: B.286, Temp: 29.72
76 .758, o RateZ: -A.021, Magi: B.288. Temp: 29.72
27 .888. RateZ: —A.828,. Magi: B.28%7. Temp: 29.72
27.258, RateZ: B.884, Magdi: B.287, Temp: 29.72
27 .588, RateZ: —-B.832, Magi: BA.287. Temp: 29.72
27.758. RateZ: —B.882, Magi: A.286. Temp: 29_72
98 .8008, RateZ: A.8A?,. Magi: A.289, Temp: 29.72
98.258. o RateZ: —-B.8B8, Magi: A.287. Temp: 29.72
98.5688, o RateZ: —B.88%, Magi: B.286. Temp: 29.73
28.758. RateZ: —-B._018, Magi: A.287. Temp: 29.73
: 99.808, RateZ: A.036. Magi: A.287,. Temp: 29.73
99.258. RateZ: B.B22, Magh: B.287, Temp: 29.73
99.5688, RateZ: A.A40,. Magi: A.288, Temp: 29.73
29.758. o RateZ: —-B.634, Magi: B.288. Temp: 29.73
186.68688. RateZ: —-B.824, Magik: @.284, Temp: 29.73
188.258. RateZ: —B.828,. MagX: B.291. Temp: 29.73
1808.5688. RateZ: A.817, Magi: A.287, Temp: 29.73
188.758. RateZ: —B.887, Magi: B.291,. Temp: 29.73
181 .68688. RateZ: B.883, Magi: B.28%7, Temp: 29.73
181.258, RateZ: —B.865, MagX: B.289,. Temp: 29.73
181 .5688. RateZ: B.AB8, Magi: B.28%9, Temp: 2%9.73
181.758, RateZ: A.A74, Magi: A.288, Temp: 29.73
182 .68688. RateZ: B.845, Magi: 8.298, Temp: 2%9.73
182.258. RateZ: —B.8108, Magk: B.287. Temp: 29.73
182.5688. RateZ: —-B.813, Mag¥: B.286. Temp: 29_73
182.758. RateZ: A.817, Magi: A.286, Temp: 29.74
183 .868. o RateZ: —-B_.8108,. Mag¥: 8.298. Temp: 29_74
183.258. o RateZ: A.B41,. Magi: A.288, Temp: 29.74
183.568. RateZ: B.024, Magi: B.287, Temp: 29.74
183.758. RateZ: A.A37, Magi: A.288, Temp: 29.74
184.868. RateZ: —B_832, Magx: @_28B8,. Temp: 29_74
184.258. RateZ: A.A23, Magi: A.288, Temp: 29.74
184.5688. RateZ: B.887, Magi: B.287. Temp: 27.74

Fig. 2: IMU Debug Output

This output provides confidence that the IMU is obtaining the correct sensor measurements.
Suggested Operation

During normal operations, when using the OpenIMU in your system, it is best to disable the debug output. This will
reduce the load on the platform and free up the processing capability for other tasks.

5.1.6 Bootloader

Each of the examples have its associated application pre-built as .bin files, which can be downloaded directly onto the
OpenIMU hardware directly from Aceinna Navigation Studio.

Download Procedure

5.1. OpenIlMU Core Details 56

https://developers.aceinna.com

OpenIMU Documentation

Connect to the OpenIMU Python Server

From the terminal window, issue the command to start the OpenIMU Python Server:

onnected0penIMU3IBAZASAZA-I885-A1 1.6A.1 SHN:1718000060H3

sUsersslabusers~Documentssplatformiospython—openimu»python server.py
utoconnected

Fig. 3: Python Server Connection

Connect the Unit to the Aceinna Navigation Studio

From the Aceinna Navigation Studio main page, select Code and Apps from the menu on the left-hand side of the
window

ACE Navigation Studio

Connected to IMU Server

Getting Started

Device Status

Devices
Simulation !.IJ OpenlMU300ZA5020-3885-01 1.0.1 SN:1710000008
Code © MyOpeniiU 2.2.1

Apps

Show:

Develop

¥ Public Private

Upload
Forum
News

Downloading the Application

Firmware33

There are many variations of passages of
Lorem Ipsumn available, but the majority
have suffered alteration.

By ACEINNA Inc.

DOWNLOAD MORE

Firmware22

Aenean vulputate eleifend tellus. Aenean
leo ligula, porttitor eu, consequat vitae,
eleifend ac, enim. Aliquam lorem ant.

By ACEINNA Inc.

DOWNLOAD MORE

Fig. 4: ANS Applications

Firmware11

Lorem Ipsum is not simply random text. It
has roots in a piece of classical Latin
literature from 45 BC

By ACEINNA Inc

DOWNLOAD MORE

Firmwared44

Donec sodales sagittis magna. Sed
consequat, leo eget bibendum sodales
augue velit cursus nunc

By ACEINNA Inc

DOWNLOAD MORE

Navigate to the desired application and click the Download link at the bottom of the application box. In this case,

select the IMU Application Download link.

Once the Download link has been clicked, a progress bar at the top of the application box will indicate how much time
is left to download the application:

Download Progress View In Terminal

Additionally terminal messages in the window in which the Python server is running will indicate progress. Once
complete, the terminal will indicate Success and restart the app. At this point the unit is now running the downloaded

5.1. OpenIMU Core Details

57

https://developers.aceinna.com

OpenlMU Documentation

Jul-20-2018 v 1.0.0

IMU Application

Use the OpeniMU hardware to obtain data
from inertial-sensors.

By joe motyka

DOWNLOAD MORE

Fig. 5: IMU Application

Jul-20-2018 v 1.0.0

IMU Application

Use the OpenlhU hardware to obtain data
from inertial-sensors.

By joe motyka

MORE

Fig. 6: Application Download Progress

5.1. OpenIlMU Core Details

OpenIMU Documentation

application.

24, 13824@)
SuUCCess

248, 1384868>
SUCCESS

24@,. 138728>
SuUCCess

248, 138968>
SUCCESS

C24@,. 137200>
SuUCCess

248, 139448>
SUCCESS

(248, 137680>
SuCCess

248, 139928>
SUCCESS

(248, 148166>
SuCCess

248, 148488>
Success

(246, 148640>
SuCCess

248, 148888>
Success

248, 141128>
SuCcess

248, 141368>
Success

248, 1416808>
SuCcess

248, 141848>
SuCccess

248, 142888>
SuCcess

248, 142328>
BuCCcess

24, 1425682
SuCcess
Restarting app ...
autoconnected
Connected0penlMUZBAZASA2B-3885-61 1.8.1 SH:1710000008

Fig. 7: Terminal Download Progress Screen

The unit can now be connected to the Navigation Studio and data plotted or saved in an output file.

5.1.7 Python-Based Message Decoder

Contents

* Creating a python-based decoder

Creating a python-based decoder

The first step to using the OpenIMU decoder and spooling tools, python-openimu, to properly decode an output
message, is to define the message in the file openimu.json. For the “s1” message, the following is added to the
file:

5.1. OpenIlMU Core Details 59

OpenlMU Documentation

"name": "Sl",
"description":
"payload": [{

"type":
"name" :
"unit":

}I
{
"type":
"name" :
"unit":
}I
{
"type":
"name" :
"unit":
}I
{
"type":
"name" :
"unit":
}I
{
"type":
"name":
"unit":
}I
{
"type":
"name" :
"unit":
}I
{
"type":
"name" :
"unit":
}V
{
"type":
"name" :
"unit":
}I
{
"type":
"name" :
"unit":
}I
{
"type":
"name" :
"unit":
}V
{

"type"'
"name" :
"unit":

"IMU Scaled-Sensor Output

"uint32",
"timeCntzr",
llmsecll

"double",
"time",
llsll

"float",
"xAccel",

Hg"

"float",
"yAccel",
"g"

"float",
"zAccel",

Hg"

"float",
"xRate",
"deg/s"

"float",
"yRate" ,
"deg/s n

"float",
"zRate",
"deg/s"

"float",
"XMag",
el

"float",
llyMagll ,
HG"

"float",
n ZMag" ,
IIGH

Message",

(continues on next page)

5.1. OpenIlMU Core Details

60

OpenlMU Documentation

(continued from previous page)

"type": "float",
"name " : "temp nw ,
"unit": "degC"

1,
"graphs": [{

"name": "Acceleration",
"units": "g",
"xAxis": "Time (s)",
"yAxes": ["xAccel", "yAccel", "zAccel"],
"colors": ["#FFOOOO", "#OOFFOO", "#0OOOFF"],
"yMax": 5
}I
{
"name": "Angular—-Rate",
"units": "deg/s",
"xAxis": "Time (s)",

"yAxes": ["xRate", "yRate", "zRate"],
"colors": ["#FF0000", "#00OFFOO"™, "#0000FF"],

"yMax": 200
}I
{
"name": "Magnetic-Field",
"unitS": "G",
"xAxis": "Time (s)",

"yAxeS": [llXMaqll, "yMag", "ZMag"] ,
"colors": ["#FF0OOO", "#O0OFFOO", "#000OFF"],

"yMax": 5
}I
{
"name": "Board-Temperature",
"units": "degC",
"xAxis": "Time (s)",

"yAxes": ["temp"],
"colors": ["#FF0000"],
"yMax": 100

This information tells the decoder the order of the output data in the serial message, its type (float, double, int, etc.),
as well as the units associated with the data. It also defines how the data should be plotted, including axis-titles and
colors.

Note: A useful tool to check if the json-file is properly formatted is found at: https://jsonlint.com

5.1.8 Data Capture Functions Supporting the Aceinna Navigation Studio

Contents I

5.1. OpenIlMU Core Details 61

https://jsonlint.com

OpenIMU Documentation

* OpenIMU Server
* Connect to Aceinna Navigation Studio

* Displaying Data

* Logging Data

Capturing, Displaying, and Saving Data Using the Aceinna Navigation Studio
With the following complete:
1. Serial output-message created and running on the OpenIMU hardware
2. The message description added to openimu.json
3. python-openimu installed on your system

you are now ready to collect IMU data.
OpenlIMU Server
To capture data using the Aceinna Navigation Studio, the first step is to start the python-based server that will capture

the serial data streaming over the COM port. This can be done by sending the following command at a terminal prompt
from the python-openimu folder:

python commands.py

This initiates a search for the OpenIMU device on the machine’s COM ports. When detected, the terminal returns a
message similar to the following:

PROBLEMS (12) OUTPUT DEBUG CONSOLE |[TE 1: PlatformIO Y4+ O @ A~ O

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2809 Microsoft Corporation. All rights reserved.

C:\Users\labuser\Documents\PlatformIO\openimu\VG_AHRS>cd .. \..

C:\sers\labuser\Documents\platformio>cd python-openimu

C:\Users\labuser\Documents\platformio\python-openimu>python commands.py
autoconnected

ConnectedOpenIMU3887A5828-3885-61 1.8.1 SN:1718088088

A

Presentation.c

Fig. 8: Server-Connection Message at the Terminal Prompt

Once connected to the IMU type ‘start_server’ to start the server. More instructions on the Python driver are found
here

Connect to Aceinna Navigation Studio

To capture and display data on the Aceinna Navigation Studio, open a browser to https://developers.aceinna.com and
log in. From the menu on the left, select Devices and Connect. The following will appear if connected properly:

If desired, the packet output rate and other settings can be changed here.

After connecting to the OpenIMU device, the terminal reflects this by displaying the configuration of the unit:

5.1. OpenIMU Core Details 62

b 4

https://developers.aceinna.com
../../tools/python.html
https://developers.aceinna.com
https://developers.aceinna.com

OpenIMU Documentation

Navigation Studio

Getting Started Connected to IMU Server:

Devices

Record tf* OpenIMU300ZA5020-3885-01 1.0.1 SN:1710000008

Mation
Code

Farum

Change

MNews Setting Curren

Baud Rate 115200 115200 ~
Packet Type 51 51 =
Packet Rate 10 10 +
Accel LPF 25 25 -
Rate LPF 25 25 -
Orientation +X+YZ +E+Y+L -

Fig. 9: Connection to IMU Server

OUTPUT DEBUG CONSOLE 2: PlatformIO I+ M @ A~ O X

C:\Users\labuser\Documents\platfo \python-openimu>python commands.py
autoconnected

ConnectedOpenIMU38@ZA5028-3885-81 1.0.1 SN:1710000088
>»>server_start

»»requesting

Data CRC: 1482142912

Data Size: 64

Baud Rate: 115208
Packet Type: sl
Packet Rate: 20
Accel LPF: 25

Rate LPF: 25
Orientation: +X+Y4Z
Bit Status: False

HiPresentation.c

Fig. 10: Server-Connection Message at the Terminal Prompt

5.1. OpenIMU Core Details 63

OpenlMU Documentation

Displaying Data

For a live display of data from the device, select the Record menu then click on the Play button. An example capture
of the accelerometer data follows:

Acceleration

-5 i
1332.75 1335.75 1341.24

Time (s)

Fig. 11: Plot of IMU Accelerometer Data

Logging Data
To log data select the Log Control switch. The output file consists of data found in the serial message. In particular
the message consists of:

¢ Time (in counts and seconds)

* Accelerometer data (in [g])

¢ Rate-Sensor data (in [°/s])

* Magnetometer data (in [G])

* Board-Temperature data (in [°C])

The following figure shows the contents of the captured data file, indicating that all selected data are saved as intended.

5.1. OpenIlMU Core Details 64

OpenlMU Documentation

kimeITOW,time,xﬁccel,yﬁccel,znccel,xRate,yRate,zRate,xMag,yHag,zMag,temp

282300,292
282320,292
282330,292
282350,292
282360,292
282380,292
292400,292
282410,292
282430,292
292440,292
282460,292
282480,292
282450,292
282510,292
282520,292
282540,292
282560,292
292570,292
282550,292

282600,292.
2392620,292.
282640,292.
282650,292.
292670,292.
282680,292.

292700,292
292720,2%
292730,2%9
292750,292
292760,2%9
292780,282

BB R R R R P

-300000000000,
.320000000000,
.330000000000,
-350000000000,
.360000000000,
.380000000000,
-400000000000,
-410000000000,
.430000000000,
-440000000000,
-460000000000,
- 480000000000,
.4950000000000,
-510000000000,
-520000000000,
- 540000000000,
.560000000000,
-570000000000,
- 590000000000,
600000000000,
620000000000,
640000000000,
650000000000,
670000000000,
680000000000,
. 700000000000,
20000000000,
. 730000000000,
- 750000000000,
. 760000000000,
. 780000000000,

2.800000000000,
2.810000000000,

-830000000000,
.840000000000,
-860000000000,
-880000000000,
.8950000000000,

-0.

00201910, 0.

00286614, 0.
00241628, 0.
00190265, O.
00168020, O.
00097376, -0
00138218, -0
00039054, -0
00236613, -0
00274126, -0
00191691, -0
00237940, O.

00193565, 0.
00170721, -0
00204248, -0
00122875, -0
00224951, -0
.00189393, -0
.00156008, O
00111164, O
.00139861, 0.
00193238, O
00217579, O
00261411, -0
00143532, -0.

.00205310, O.
.00156667, -0
.001605%0, -0
.00261864, -0
.00279064, -0
.00288121, -0
.00189324, -0
.00214101, -0
.00126435, -0
.00111330, -0
.00135733, 0.

.00151269, 0.
.00238976, 0.

0po70894, -0.
00054671, -1.
00012953, -1.
00022255, -1.
00005613, -1.
.00106805, -1.
.000%92208, -1.
.00023197, -1.
.00039698, -1.
.00040483, -1.
.00052%03, -0.
Opois81iz0, -1.
00057816, -1.
.00133564, -1.
.00027414, -1.
.00086628, -1.
.00059281, -0.
.00008876, -1
.00074338, -0.
.00063984, -0.
00008168, -1.
.00060333, -1.
00076254, -1
.00065658, -1.
00031316, -1.
0po10566, -1.
.00042325, -1.
.00105158, -1.
.00120%51, -1.
.00152914, -1.
.00083522, -1.
.00032563, -1.
.00097840, -1.
.000939424, -0.
.00057698, -0.
00011045, -1.
00012875, -0.
oop22297, -1.

Fig.

99919415,
00162399,
00057185,
00028942,
00063181,
00111389,
00077891,
00058722,
00098121,
00076270,
99982393,
00157332,
00089025,
00110674,
00078738,
00213861,
99990159,

.00032949,

99992335,
99843735,
00039744,
00168681,

.00140095,

00232029,
00080037,
00093722,
00021029,
00117230,
00016785,
00021803,
00257635,
00095844,
00242209,
99944188,
99951839,
00118256,
92230767,
00068378,

0.
.02000007,
.01204931,
-02340982,

|
D00 000000000000 000000000

-0.
-0.
-0.
.05224881,
.04301344,
.02901284,
-0.
-0.
.02882084,
-0.
.02354236,
.14041716,

04940020,

03855983,

.01535512,
-03456460,
.06906004,

05435806,
02944281,
04298836,
01357799,
04647730,
00112826,
04349720,

-11987440,
.02699803,
-019381043,

01364117,

.03249335,
.00778001,
.07713205,

06470323,
03621025,
03386847,
02246748,
036470865,
04283529,

01422259,
00227018,

00411007,

ooe2ele0,

o

-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-o.
-0.

-0

-o.
-0.
-0.
-o.
-0.

=}

-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.

-0

-o.
-0.
-0.
-o.
-0.

.01053898, -0.
06367743, 0.
02115507, O.
09668475, -0
12499246, -0
08603050, O.

02484225, 0.

04079971, O.
09547580, -0
03539148, -0
08904774, O.
00926387, O.
03253048, -0
09231940, -0
10026760, -0
01112851, -0
06606586, O.

06967562, O.
00100617, -0
.01456794, 0.
03491977, -0
09581902, -0

04235784, O
04787493, 0.
09901554, -0
07424885, 0.
02480554, -0
09988170, -0
11903654, -0
06123648, -0
06009072, -0
.03636564, -0
08648770, O.

05838403, 0.
03794597, 0.
02024340, O.
00697362,

08348626,

12: IMU Angle Data File

5.2 Inertial Measurement Unit (IMU) Application

08763175,
03553406,
00998531,

.03467730,

05772449,
00486011,
01820971,
04235101,

.02284101,
.03668196,

04402783,
01965515,

03305940,
04214227,
03038196,
00473972,

02852671,
03851629,

.02615706,

01296413,

01149094,
03082752,
07971172, O.
04664550,

02126878,

06177394,

.05874051,

03083275,

00788887,

04751080,

.01348535,
.03690565,
.05412498,
.02940226,

00064673,
03477932,
00050074,
00855326,

DO0ODO0D0DO0ODO000DO00O0D0D0000D00000D00000D0000000O0

22903088,

.23028445,

23073351,

.23110659,
.23104802,

23012848,

-22963716,

PR R R R B3 R R R R R3PS R R R BRI RS R R R R Rd R R BRI R BRI B3 R R R R B3 R R R RD R

COO0O000O00000000000000000000000000000 000

-]

[R e P T R = N e R O S B A S R N T R A S R e Ry =)
- HoE)

o e e e o e o N e e o e e e R

57122874,

57281804,
.57355213,
57375522,
57357854,
.57333028,
57350957,
57377213,
57405126,
.5T7406678,
57433248,
57466304,
57484525,
57470071,
57478658,
57578170,
.57622135,
57590133,
57516634,
.57512051,
.57494133,
57343125,
57328844,
57398975,
L57416064,
57414663,
57365668,
57391602,
57447767,
57485086,
57615322,
.57603168,
57571393,
57582277,
57546842,
.57530272,
57566285,
57533662,

COO0O000O00000000000000000000000000000 000

The Inertial Measurement Unit (IMU) application enables the OpenIMU hardware to provide inertial-sensor data from
accelerometers, rate-sensors, and magnetometers.

The exact combination of sensor data you use will depend upon the ultimate goal of your project. However, at least a
subset of this data is required to create an application that estimates attitude, position, and/or heading.

The IMU application performs the following functions:

* Sets the default OpenIMU configuration for the IMU application

* Acquires Sensor Data - acceleration, angular-rate, local magnetic-field, and sensor temperature data

* Generates and sends the following output message to the UART:

Acceleration readings in [g]
Rate-sensor readings in [°/s]
Magnetic-field readings in [G]

Sensor temperature readings in [°C]

5.3 Static-Leveler Application

A relative time measurement (both integer and decimal values)

The static-leveler application enables the OpenIMU hardware to provide roll and pitch estimates (the angles that the x
and y-axes are rotated away from level) using only accelerometer measurements. This simple example is based on the

5.2. Inertial Measurement Unit (IMU) Application

65

29.01853125
29.01953125
29.01953125
29.01853125
29.01953125
9.019853125
29.01953125
29.01953125
29.019853125
29.01953125
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
9.02343750
29.02343750
29.02343750
29.02343750
29.02343750
9.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750
29.02343750

OpenlMU Documentation

IMU Example Application
The Static Leveler application performs the following functions:
* Sets the default OpenIMU configuration for the Leveler application
* Acquires Sensor Data - acceleration, angular-rate, local magnetic-field, and sensor temperature data
» Executes the Leveler application algorithms and other relevant math functions to create output data:
— Compute the acceleration unit-vector.
— Normalize using the magnetometer readings.
— Form the gravity vector in the body-frame.
— Form the roll and pitch Euler angles from the gravity unit vector.

* Generates a serial output message' consisting of the following:

A relative time measurement (both integer and decimal values)

Acceleration readings in [g]

Rate-sensor readings in [°/s]

Magnetic-field readings in [G]

Sensor temperature readings in [°C]

5.4 Vertical-Gyro / Attitude and Heading Reference System Applica-
tion

The Vertical-Gyro (VG) / Attitude and Heading Reference System (AHRS) application enables the OpenIMU hard-
ware to fuse inertial-sensor information (accelerometers, rate-sensors, and — for the AHRS — magnetometers) to
generate an attitude solution. The solution makes use of the high data-rate (DR) rate-sensor output to propagate the
attitude forward in time while using the accelerometers and magnetometers as references to correct for estimated
rate-bias errors and attitude-errors at a lower DR.

The mathematics behind the algorithm are quite a bit more complicated than the math associated with the Static-
Leveler application. The full description is not discussed here, as . However, the complete formulation is provided in
the “Ready-to-use Applications” section.

The VG/AHRS example application performs the following functions:
* Sets the default OpenIMU configuration
* Acquires sensor data - acceleration, angular-rate, local magnetic-field, and sensor temperature data
» Executes the VG/AHRS algorithm
* Populates the output data structure

* Generates and sends the following output message to the UART - the output message description is To Be
Provided

! The output message is the same as for the IMU application, but tailored by the Leveler algorithm

5.4. Vertical-Gyro / Attitude and Heading Reference System Application 66

OpenlMU Documentation

5.5 Inertial Navigation System Application

The INS APP supports all of the features and operating modes of the VG/AHRS App. In addition it includes the
capability of interfacing with an external GPS receiver and associated software running on the processor, allowing
computation of navigation information as well as orientation information. The application name, GPS/INS APP,
stands for GPS Inertial Navigation System, and it is indicative of the navigation reference functionality that application
provides by outputting inertially-aided navigation information (Latitude, Longitude, and Altitude), inertially-aided 3-
axis velocity information, as well as heading, roll, and pitch measurements, in addition to digital IMU data.

The mathematics behind the algorithm are more complicated than the math associated with the VG/AHRS application.
The full description is not discussed here, as the complete formulation is provided in the “Ready-to-use Applications”
section.

The INS example application performs the following functions:
* Sets the default OpenIMU configuration
* Acquires sensor data - acceleration, angular-rate, local magnetic-field, GPS, and sensor temperature data
* Populates the output data structure

* Generates and sends the following output message to the UART - the output message description is To Be
Provided

5.5. Inertial Navigation System Application 67

CHAPTER O

OpenIMU Software Overview

This section reviews more detail on how OpenIMU platform code modules are structured and work together:

6.1

Software Dataflow Diagram
RTOS

Sampling and Filtering
UART Messaging

SPI Messaging

Settings

Tutorial App

CAN J1939 Messaging

Software DataFlow

The OpenIMU software data flow is depicted in the following diagram.

* The double circle icons denote inputs
» The single circle icons denote software components

* The thick single circle icons denote outputs

the double horizontal line icons denote data stores

» The arrow icons denote data that is sent from one software component, input, or data store to a software
component

68

OpenlMU Documentation

Filter
Configuration
Pre-Filter Axes Setings
Sensor - configuration - _Orientation Calibration LUT o 5 %o,; %,
. \Q‘\}‘) Sy, G
S @, Y%,
2 ('ge" \9@ .
Sensor Filtered Sensor Calibrated &
Data Sensor Calibration & Rotated Sensor:
Pre-filter Data Axes Rotation Data
o
&\\0 7
0@6 }?6‘,-
66?9'2‘\@ 6@040 Y,
Hr R _6‘ o C?f =7
Built-In e) .
Tests 200Hz Filtered Acceleration,)
Velocit Velocity & Attitude
Integr atign Angular Rate Data
@
s, eo@\
Built-In Test % &°
Results (TO %, s
data) \. ./
l Accurate Attitude, Velocity, Position,
. . . Position, Angular Rates, Attitude, and
Identl_ﬁcatlon & Built-In Test Velocity Angular Rate Data
Version Data Results (TO data) ’
Free Integrate
\ 10 N / \ Turn Switch Threshold
pXe Packet %()‘c-'f‘ el % Stationary View Yaw Lock
%L, \ﬂ"‘{\ ‘(\,p &
%, B s\ \O
% © @% 0.;@" .
%, o&‘%@ﬁg
Extended &)
Kalman
Filter Vs,
P ey
o 0,.me
O‘b (3'{6 “@f‘
agnet-
ometer

6.1. Software DataFlow 69

OpenlMU Documentation

6.2 FreeRTOS

The applications for all OpenIMU300 units use the FreeRTOS Real-Time Operating System (FreeRTOS Site), while
OpenIMU330 units uses a simple real-time scheduler. FreeRTOS is very widely used, as it is feature-rich, has a small
footprint, and can be used in commercial application without having to expose intellectual property.

FreeRTOS is licensed under the MIT Open Source License (FreeRTOS Licence Page).
The FreeRTOS site provides a wealth of informative online documents and PDF books that can be downloaded.
The FreeRTOS source code is supplied, but the user is advised to not change anything in the code.

The many FreeRTOS header files are located in the “FreeRTOS library/include’ directory. The user is urged to search
in that directory when any FreeRTOS related API function prototype, data type, ‘#define’ literal constant, or any other
FreeRTOS related item

6.3 Sampling and Filtering Modules

To Be Provided

6.4 OpenIMU UART Messaging Framework

1. General Settings

The serial port settings are: 1 start bit, 8 data bits, no parity bit, 1 stop bit, and no flow control. Standard
baud rates supported are: 38400, 57600, 115200, 230400 and 460800.

Common definitions include:
A word is defined to be 2 bytes or 16 bits.

All communications to and from the unit are packets that start with a single word alternating bit preamble
0x5555. This is the ASCII string “UU”.

All communication packets end with a single word CRC (2 bytes). CRCs are calculated on all packet
bytes excluding the preamble and CRC itself. Input packets with incorrect CRCs will be ignored.

All multiple byte values except CRC and packet code are transmitted in Little Endian format (Least
Significant Byte First).

Each complete communication packet must be transmitted to the OpenIMU300xx inertial system within
a 4 second period.

2. Number Formats
Number Format Conventions include:
Ox as a prefix to hexadecimal values
single quotes (**) to delimit ASCII characters

no prefix or delimiters to specify decimal values.

Note:

e All multiple byte number format are transmitted in little-endian format. E.g., Bytes are transmitted
LSB first, followed by lesser significant bytes.

6.2. FreeRTOS 70

https://www.freertos.org
https://www.freertos.org/a00114.html

OpenlMU Documentation

* Bytes in strings are transmitted in left to right string byte order.

The table below defines variable formats:

3. Packet Structure

Below provided description of OpenIMU framework messages. Messages described the way they occur

ID | Type Size (bytes) | Range

Ul | Unsigned Char 1 0to 255

U2 | Unsigned Short 2 0 to 65535

U4 | Unsigned Int 4 0to 232-1

U8 | Unsigned long long | 8 0 to 2764-1

F Float IEEE-754 4 1.187-38 to 3.4738
D | Double IEEE-754 8 2.237-308 to 1.807308
I1 | Signed Char 1 -128 to +127

12 | Signed Short 2 -32768 to 32767
14 | Signed Int 4 -2731 to 2"31-1

I8 | Signed long long 8 -2163 to 2"63-1
ST | String N ASCII

in serial line. Open IMU framework takes care of wrapping up user payload and calculating CRC.

3.1 Generic Packet Format

All of the Input and Output packets, except the Ping command, conform to the following structure:

0x5555
<2-byte <payload <variable <2-byte
packet code byte-length length CRC (U2)>
(U2)> Ub)> payload>
3.2 Packet Header

The packet header is always the bit pattern 0x5555.

3.3 Packet Code

The packet code is always two bytes long in unsigned short integer format. Most input and output packet
types for convenience can be interpreted as a pair of ASCII characters. For example code “aB” will

translate to hex value 0x6142”.

NOTE:

1. First character value should be more or equal ‘a’ (0x61)

2. Packet code transmitted in Big Endian format

3.4 Payload Length

The payload length is always a one byte unsigned character with a range of 0-255. The payload length
byte is the length (in bytes) of the <variable length payload> portion of the packet ONLY, and does not
include the CRC.

3.5 Payload

The payload is of variable length based on the packet type.

6.4. OpenlMU UART Messaging Framework

71

OpenlMU Documentation

3.6 16-bit CRC-CCITT

Packets end with a 16-bit CRC-CCITT calculated on the entire packet excluding the 0x5555 header and
the CRC field itself. A discussion of the 16-bit CRC-CCITT and sample code for implementing the
computation of the CRC is included at the end of this document. This 16-bit CRC standard is maintained
by the International Telecommunication Union (ITU). The highlights are:

Width = 16 bits

Polynomial 0x1021

Initial value = Ox1DOF

No XOR performed on the final value.

See Appendix A for sample code that implements the 16-bit CRC algorithm.
3.6 NAK Packet

NAK packet sent in response to the unknown or corrupted input message. NAK packet has next format:

0x5555
0x0000 2 code of <2-byte
received CRC (U2)>
packet or 0

4. Messaging Overview

Table below summarizes the messages initially introduced in OpenIMU300xx framework. New messages
can be easily added (please check chapter “Procedure for adding new message”) Packet codes are assigned
mostly using the ASCII mnemonics defined above and are indicated in the summary table below and in
the detailed sections for each command. The payload byte-length is often related to other data elements
in the packet as defined in the table below. The referenced variables are defined in the detailed sections
following. Output messages are sent from the OpenIMU Series inertial system to the user system as a
result of user request or a continuous packet output setting. Interactive messages can be sent from the
user system to the OpenIMU Series inertial system and will result in an associated Reply Message or
NAK message. Note that reply messages typically have the same <2-byte packet type (U2)> as the input
message that evoked it but with a different payload.

6.4. OpenlMU UART Messaging Framework

72

OpenIMU Documentation

Table 1: Messages Table

ASCII Function Type
Code Payload
02) Length
(U1)

Interactive

Messages

pG 0x7047 0
Ping Input/Reply

Message

uC 0x7543 N (up to 248)
Update Input/Reply
Config Message
Command/
Response

uP 0x7550 12
Update Input/Reply
Parameter Message
Command/
Response

uA 0x7541 N (up to 240)
Update Input/Reply
All Message
Command/
Response

sC 0x7343 0
Save Input/Reply
Config Message
Command/
Response

D 0x7244 0
Restore Input/Reply
Defaults Message
Command/
Response

sC 0x7343 0
Save Input/Reply
Config Message
Command/

6.4. OpenlMU UART Messaging Framework Response 73

eC 0x6743 8

(At Traev114 /D Aaxly s

OpenIMU Documentation

5. OpenIMU Interactive Messages

5.1 User Ping Command

The user Ping command has no payload. Sending the Ping command will cause the unit to send a Ping

Ping (‘pG’ = 0x7047)

Preamble

Packet Code

Length

Termination

0x5555

0x7047

0

<CRC (02)>

response with next format:

Ping (‘pG =
0x7047)
Preamble Packet Type Length Payload Termination
0x5555 0x7047 N <CRC (U2)>
Unit Model and
Serial
Number <S>
(string)

The user Ping response will return null-terminated string, containing unit model name and unit serial

number.

5.2 Update Config Command

(‘uC’ =0x7543)

Preamble

Packet Type

Length

Payload

Termination

0x5555

0x7543

8+8*N

N Parameters

<CRC (U2)>

The Update Config command used to update and apply N consecutive user-defined configuration param-

eters at a time in unit. Parameter value is 64 bit (8 bytes) and can have arbitrary type.

Update Config

Payload Format

6.4. OpenlMU UART Messaging Framework

74

OpenIMU Documentation

Byte Offset Name Format Notes
0 U4 LSB First
Number of
consecutive
parameters to update
4 U4 LSB First
Offset of first
parameter in
unit config structure
8 Parameter Value LSB First
U8 or I8 or F8 or
double or S8 or A8
8+N*8 Parameter Value LSB First
U8 or I8 or F8 or
double or S8 or A8

Upon reception — each parameter is validated (if desired) and if validation passes parameter gets written
into gUserConfiguration structure and also applied to the system on-the-fly(if desired). If value of one
parameter is invalid — all parameters ignored. Updated configuration parameters will be active until next

unit power cycle or reset.

Update Config command will have next response:

Preamble

Packet Type

Length

Payload

Termination

0x5555

0x7543 4

Error Code (14)

<CRC (U2)>

Error code can be: (0) — “Success”, (-3) — “Invalid Payload Size”, (-1) — “Invalid parameter number”, (-2)

— “Invalid parameter value”

5.3 Update Parameter Com

mand

(‘uP’ = 0x7550)

Preamble

Packet Type

Length | Payload

Termination

0x5555

0x7550

12

<CRC (U2)>

The Update Parameter command used to update and apply single user-defined configuration parameter in

unit. Parameter value is 64 bit (8 bytes) and can have arbitrary type.

Update Parameter Payload Format

6.4. OpenlMU UART Messaging Framework

75

OpenlMU Documentation

Byte Offset Name Format Notes

0 U4 LSB First
Offset of
parameter

in unit config
structure

8 Parameter Value LSB First

U8 or I8 or F8 or
double or S8 or A8

Upon reception parameter value is validated (if desired) and if validation passes parameter gets written
into gUserConfiguration structure and also applied to the system on-the-fly(if desired). If value of the
parameter is invalid — it ignored. Updated configuration parameter will be active until next unit power
cycle or reset.

Update Parameter command will have next response:

Preamble | Packet Type | Length | Payload Termination
0x5555 0x7550 4 Error Code (I4) | <CRC (U2)>

Error code can be: (0) — “Success”, (-3) — “Invalid Payload Size”, (-1) — “Invalid parameter number”, (-2)
— “Invalid parameter value”

5.4 Update All Command

(‘uA’ = 0x7541)
Preamble Packet Type | Length | Payload Termination
0x5555 0x7541 8N N (up to 30) parameters | <CRC (U2)>

The Update All command used to update/apply up to 30 consecutive user-defined configuration parame-
ters at a time in unit, starting from first parameter in user configuration structure. Each parameter has size
8 bytes (64 bit) and can have arbitrary type.

Update All Payload Format

Byte Offset Name Format Notes
0 Parameter Value (first LSB First
1
parameter) U8 or I8 or F8 or
double or S8 or A8
N*8 Parameter Value (last LSB First

t
parameter) U8 or I8 or F8 or

double or S8 or A8

Upon reception — each parameter is validated (if desired) and if validation passes parameter gets written
into gUserConfiguration structure, starting from first parameter (offset 0) and also applied to the system

6.4. OpenlMU UART Messaging Framework

76

OpenlMU Documentation

on-the-fly(if desired). If value of one parameter is invalid — all parameters ignored. First two parameters
are ignored. Updated configuration parameters will be active until next unit power cycle or reset.

Update All command will have next response:

Preamble | Packet Type | Length | Payload Termination
0x5555 0x7541 4 Error Code (I4) | <CRC (U2)>

Error code can be: (0) — “Success”, (-3) — “Invalid Payload Size”, (-1) — “Invalid parameter number”, (-2)
— “Invalid parameter value”

5.5 Save Config Command

Save Config (‘sc’ = 0x7343)
Preamble Packet Code | Length | Termination
0x5555 0x7343 0 <CRC (U2)>

The Save Config command has no payload. Upon reception of “Save Config” command unit will save
current gUnitConfiguration structure into EEPROM and updated parameters will be applied to the unit all
the times upon startup (untill new changes will be made).

Save Config command will have next response in in case of success:

Preamble | Packet Code | Length | Termination
0x5555 0x7343 0 <CRC (U2)>

Note: Save configuration command from serial port works on OpenIMU300ZI. It is not supported by
OpenIMU300RI, but one can make permanent changes just by rebuilding the FW with desired default
settings.

5.5 Restore Defaults**

Restore defaults (‘rd’ = 0x7244)
Preamble Packet Code | Length | Termination
0x5555 0x7244 0 <CRC (U2)>

The Restore defaults command has no payload. Upon reception of “Restore Defaults” command unit will
save default configuration structure gDefaultUserConfig into EEPROM and updated parameters will be
applied to the unit all the times upon startup (untill new changes will be made).

Restore Defaults command will have next response in case of success:

Preamble | Packet Code | Length | Termination
0x5555 0x7244 0 <CRC (U2)>

5.6 Get Config Command

(‘gC’ = 0x6743)
Preamble Packet Type | Length | Payload | Termination
0x5555 0x6743 8 <CRC (U2)>

6.4. OpenlMU UART Messaging Framework

77

OpenIMU Documentation

The Get Config command used to retrieve N consecutive user-defined configuration parameters at a time

from unit. Parameter value is 64 bit (8 bytes) and can have arbitrary type.

Get Config Payload Format

Byte Offset

Name

Format

Notes

0

Number

of
consecutive
parameters
to update

U4

LSB First

Offset of
first
parameter

in unit config
structure

U4

LSB First

Get Config command will have next response:

(‘gC’ = 0x6743)

Preamble

Packet Type

Length | Payload

Termination

0x5555 0x6743

8+8*N | N parameters

<CRC (U2)>

Get Config Response Payload Format in case of success:

6.4. OpenlMU UART Messaging Framework

78

OpenIMU Documentation

Byte Offset Name Format Notes
0 U4 LSB First

Number

of
consecutive
parameters
to update

4 U4 LSB First

Offset of
first
parameter

in unit config

structure
8 Parameter Value LSB First
U8 or I8 or F§ or
double or S8 or A8
8+N*8 Parameter Value LSB First
U8 or I8 or F§ or
double or S8 or A8
Get Config Response Payload Format in case of error:
Preamble | Packet Type | Length | Payload Termination
0x5555 0x6743 4 Error Code (I4) | <CRC (U2)>

Error code can be: (0) — “Success”, (-3) — “Invalid Payload Size”, (-1) — “Invalid parameter number”, (-2)
— “Invalid parameter value”

5.7 Get All Command

(‘geA’ =0x6741)
Preamble Packet Type | Length | Termination
0x5555 0x6741 0 <CRC (U2)>

The Get All command used to retrieve N (up to 30) consecutive user-defined configuration parameters at
a time from unit, starting from first parameter in gUserConfiguration structure. Parameter value is 64 bit
(8 bytes) and can have arbitrary type.

Get All command will have next response:

Preamble | Packet Type | Length | Payload Termination
0x5555 0x6741 8*N N parameters | <CRC (U2)>

Get Config Response Payload Format in case of success:

6.4. OpenlMU UART Messaging Framework 79

OpenIMU Documentation

Byte Offset Name Format Notes
0 U4 LSB First

Number

of
consecutive
parameters
to update

4 U4 LSB First

Offset of
first
parameter

in unit config

structure
8 Parameter Value LSB First
U8 or I8 or F§ or
double or S8 or A8
8+N*8 Parameter Value LSB First
U8 or I8 or F§ or
double or S8 or A8
Get All Response Payload Format in case of error:
Preamble | Packet Type | Length | Payload Termination
0x5555 0x6741 4 Error Code (I4) | <CRC (U2)>

Error code can be: (0) — “Success”, (-3) — “Invalid Payload Size”, (-1) — “Invalid parameter number”, (-2)
— “Invalid parameter value”

5.8 Get Parameter Command

(‘gP’ = 0x6750)
Preamble Packet Type | Length | Payload | Termination
0x5555 0x6750 4 <CRC (U2)>

The Get Parameter command used to retrieve one user-defined configuration parameter from unit gUser-
Configuration structure. Parameter value is 64 bit (8 bytes) and can have arbitrary type.

Get Parameter command payload format

6.4. OpenlMU UART Messaging Framework 80

OpenIMU Documentation

Byte Offset Name Format Notes
0 U4 LSB First
Offset of
parameter
in unit config
structure
Get Parameter command will have next response:
(‘gP’ = 0x6750)
Preamble Packet Type | Length | Payload Termination
0x5555 0x6750 12 parameter | <CRC (U2)>
Get Parameter response rayload format in case of success:
Byte Offset Name Format Notes
0 U4 LSB First
Offset of
parameter
in unit config
structure
4 Parameter Value LSB First
U8 or I8 or F8 or
double or S8 or A8
Get Parameter response payload format in case of error:
Preamble | Packet Type | Length | Payload Termination
0x5555 0x6750 4 Error Code (I4) | <CRC (U2)>

Error code can be: (0) — “Success”, (-3) — “Invalid Payload Size”, (-1) — “Invalid parameter number”, (-2)
— “Invalid parameter value”

5.9 Get User Version Command

(‘gV’ = 0x6756)
Preamble
0x5555

Termination
<CRC (U2)>

Packet Code | Length
0x6756 0

The Get Version command has no payload. Sending the Get Version command will cause the unit to send
a response with next format:

6.4. OpenlMU UART Messaging Framework 81

OpenlMU Documentation

Preamble

Packet Type

Length

Payload

Termination

0x5555

0x6756

User Version
String

<CRC (02)>

The Get Version response will return null-terminated string, user version. User version string defined in
the UserMessaging.c file.

6. OpenIMU Output messages

Below provided examples of OpenIMU output messages implemented in Openlmu framework. Users
can easily add new messages or discard these examples at their discretion. Output messages are to be
continuously sent out by unit with preconfigured message rate.

6.1 User Test Message

User Test output message has next format:

(‘zT’ = 0x7a54)
Preamble Packet Type | Length | Payload | Termination
0x5555 0x7a54 4 <CRC (U2)>
User Test Message payload has next format:
Byte Offset | Name Format | Notes
0 Counter | U4 LSB First

Counter is simple message counter which will increase by 1 with in every consecutive Test message

“6.2 User Sensors Data Message*

User Sensors Data message has next format:

(‘zI’ = 0x7a31)

Preamble

Packet Type

Length

Payload

Termination

0x5555

0x7a31 40

<CRC (U2)>

User Sensors Data Message payload has next format:

6.4. OpenlMU UART Messaging Framework

82

OpenIMU Documentation

Byte Offset

Name

Format

Notes

0

System Timer at
the moment of
sensors sampling

U4

LSB First

Acceleration
value for axis X
(in G)

F4

LSB First

Acceleration
value for axis Y
(in G)

F4

LSB First

12

Acceleration
value for axis Z
(in G)

F4

LSB First

16

Rotation speed
for axis X (dps)

F4

LSB First

20

Rotation speed
for axis Y (dps)

F4

LSB First

24

Rotation speed
for axis Z (dps)

F4

LSB First

28

Magnetic field
for axis X (G)

F4

LSB First

32

Magnetic field
for axis Y (G)

F4

LSB First

36

Magnetic field
for axis Z (G)

F4

LSB First

6.4. OpenlMU UART Messaging Framework

83

OpenlMU Documentation

6.3 User Arbitrary Data Message

User Arbitrary Data message has next format:

(‘z2’ = 0x7a32)
Preamble Packet Type | Length | Payload | Termination
0x5555 0x7a32 27 <CRC (U2)>

User Arbitrary Data Message payload has next format:

Byte Offset Name Format Notes
0 U4 LSB First

System Timer at
the moment of
sensors sampling

4 Data of type Byte Ul

5 Data of type short 12 LSB First
7 Data of type int 14 LSB First
11 Data of type int64 I8 LSB First
19 Data of type double D4 LSB First

6.4 Raw & Scaled Data Message

Factory Raw Data Packet M (Output Packet) & Scaled Sensor Packet M (Output Packet) has the next
format, which is defined in the doc download

7 Steps to create your own interactive or output packet in embedded OpenIMU software framework
User packet processing engine located in the file UserMessaging.c.
7.1 To create new interactive packet

1. Add new input packet type into the enumerator structure UserInPacketType in the file UserMes-
saging.h before USR_IN_MAX

typedef enum {
USR_IN_NONE =0,
USR_IN_PING ,
USR_IN_UPDATE_CONFIG ,
USR_IN_UPDATE_PARAM ,
USR_IN_UPDATE_ALL ,
USR_IN_SAVE_CONFIG ,
USR_IN_RESTORE_DEFAULTS ,
USR_IN_GET_CONFIG ,
USR_IN_GET_PARAM ,
USR_IN_GET_ALL ,
USR_IN_GET_VERSION ,
// add new packet type here, before USR_IN_MAX
USR_IN_MAX ,
}UserInPacketType;

2. Add new packet type and code into the structure UserInputPackets in the file UserMessaging.c.
Packet code consists of two bytes and can be chosen arbitrary, but first byte SHOULD have value more or
equal 0x61.

6.4. OpenlMU UART Messaging Framework

84

OpenlMU Documentation

usr_packet_t userInputPackets[] = { //
{USR_IN_NONE, {0,0}1, /) no
{USR_IN_PING, "oG"},
{USR_IN_UPDATE_CONFIG, "uc"},
{USR_IN_UPDATE_PARAM, "upny,
{USR_IN_UPDATE_ALL, "uAT Y,
{USR_IN_SAVE_CONFIG, "sc"y,
{USR_IN_RESTORE_DEFAULTS, "rp"y,
{USR_IN_GET_CONFIG, "gCc"y,
{USR_IN_GET_PARAM, "gP"},

{USR_IN_GET_ALL, "gA"},

{USR_IN_GET_ VERSION, "GV},

// place new input packet code here, before USR_IN_MAX
{USR_IN_MAX, {Oxff, Oxff}}, // "

}i

3. Add code which handles input packet into the function HandleUserInputPacket in the file User-
Messaging.c . As a part of packet handling fill up desired response payload (starting from ad-
dress ptrUcbPacket->payload) and provide response payload length in the parameter ptrUcbPacket-
>payloadLength. If no response payload required — provide payload length of 0. The packet code in
the response will be the same as in the command. If erroneous conditions discovered during packet pro-
cessing — set valid variable to FALSE so system will respond with NAK packet. Additional diagnostics in
arbitrary format can be provided in the response payload (see uP packet example above).

case USR_IN_UPDATE_PARAM:

UpdateUserParam((userParamPayloadx)ptrUcbPacket->payload, &
—ptrUcbPacket->payloadLength) ;

break;

4. Done
7.2 To create new output packet

1. Add new output packet type into the enumerator structure UserOutPacketType in the file UserMes-
saging.h

// User input packet codes, change at will
typedef enum {

USR_OUT_NONE = 0, // O
USR_OUT_TEST, // 1
USR_OUT_DATAL , // 2
USR_OUT_DATA2 , // 2

// add new output packet type here, before USR_OUT_MAX
USR_OUT_MAX
}UserOutPacketType;

2. Add new packet type and code into the structure UserOutputPackets in the file UserMessaging.c.
Packet code can be chosen arbitrary, but first byte SHOULD have value more or equal 0x61 and the
packet code should be unique among input and output packets.

// packet codes here should be unique -

// should not overlap codes for input packets and system packets
// First byte of Packet code should have value >= 0x61
usr_packet_t userOutputPackets[] = {

// Packet Type Packet Code
{USR_OUT_NONE, {0x00, 0x00}},
{USR_OUT_TEST, "ZTvY,

(continues on next page)

6.4. OpenlMU UART Messaging Framework

85

OpenlMU Documentation

(continued from previous page)

{USR_OUT_DATAL, "z1"},

(USR_OUT_DATAZ2, ny2my,

// place new type and code here

{USR_OUT_MAX, {O0xff, Oxff}}, // "

}i

3. Add code which handles input packet into the function HandleUserOutputPacket in the file UserMes-
saging.c. Fill up desired packet payload (starting from address payload) and provide response payload
length in the parameter payloadLen. If no response payload required — provide payload length of 0.

case USR_OUT_DATAl:

int n = 0;

double accels([3];
double mags[3];
double rates[3];

datal_payload_t xpld = (datal_payload_t =x)payload;
pld->timer = platformGetDacqgTime () ;
GetAccelData_mPerSecSqg(accels);
for (int 1 = 0; 1 < 3; i++, n++){
pld->sensorsDatal[n] = (float)accels[i];

}

GetRateData_degPerSec (rates);

for (int i = 0; 1 < 3; i++, n++){
pld->sensorsData[n] = (float)rates[i];

}

GetMagData_G (mags) ;

for (int 1 = 0; i < 3; i++, n++){
pld->sensorsDatal[n] = (float)mags[i];

}

rpayloadLen = sizeof (datal_payload_t);

4. To activate output of the packet use function SetUserPacketType in file UserMessaging.c and provide
desired packet type as a parameter. Or provide output packet type and packet rate in default user configu-
ration in file UserConfiguration.c. Output of specific packet can also be changed “on-the-fly” by sending
to unit command “uP” with parameter number 3 and desired parameter value. Output packet rate can be
changed “on-the-fly ” by sending to unit command “uP” with parameter number 4 and desired parameter
value.

// Default user configuration structure
// Saved into EEPROM of first startup after reloading the code
// or as a result of processing "rD" command

// Do Not remove - just add extra parameters if needed
// Change default settings if desired

const UserConfigurationStruct gDefaultUserConfig = {
.dataCRC = 0,

.dataSize = sizeof (UserConfigurationStruct),
.userUartBaudRate = 115200,

.userPacketType = "z1",

.userPacketRate = 50,

.lpfAccelFilterFreq = 50,

.lpfRateFilterFreq = 50,

.orientation = "+X+Y+Z"

// add default parameter values here, if desired

(continues on next page)

6.4. OpenlMU UART Messaging Framework

86

OpenlMU Documentation

(continued from previous page)

K

5. Done

6.5 OpenIMU SPI Messaging Framework

1. Introduction

OpenIMU supports a SPI interface for data communications as a one of the choices. To enforce SPI
interface mode ‘Data Ready’ signal needs to be forced HIGH of left unconnected on system startup.
OpenIMU SPI interface signals described /ere.

OpenIMU operates as a slave device.
2. OpenIMU SPI communication model

OpenIMU has 128 8-bit registers accessible via SPI interface for reading and writing. The usage of
these registers is completely user-defined in time of FW development. Access to the few registers is
implemented in the examples as a reference:

Table 1. SPI registers used in the examples

Function Notes
Register Number | Access Type Access Type
OpenIMU300ZI OpenIMU330BI

4,5 (0x04, 0x5) r r X-Rate MSB in reg4
(Note 1)

6,7 (0x06, 0x7) r r Y-Rate MSB in reg.6
(Note 1)

8,9 (0x08, 0x9) r r Z-Rate MSB in reg.8
(Note 1)

10,11 (0x0A, | r r X-Accel MSB in reg.10

0xB) (Note 2)

12,13 O0x0C, | r r Y-Accel MSB in reg.12

0xD) (Note 2)

14,15 (OxOE, | r r Z-Accel MSB in reg.14

0xF) (Note 2)

16,17 (0x10, | r N/A X-MAG MSB in reg.16

0x11) (Note 3)

18,19 Ox12, | r N/A Y-MAG MSB in reg.18

0x13) (Note 3)

20,21 Ox14, | r N/A Z-MAG MSB in reg.20

0x15) (Note 3)

22,23 (Ox16, | r r Board-Temp MSB in reg.22

0x17) (Note 4)

24,25 O0x18, | r r Sensor-Temp MSB in reg.24

0x19) (Note 4)

50 (0x32) r N/A Mag Scale Factor | (TBD)

55 (0x37) r/w r/w Drdy Rate See p.8

56 (0x38) r/'w r/'w Accel LPF See p.7

Continued on next page

6.5. OpenIlMU SPI Messaging Framework 87

OpenlMU Documentation

Table 2 — continued from previous page

61 (0x3D) r r VG Application
Burst Read VG See p.4
62 (0x3E) r r Burst Read See p.4
61 (0x3F) r N/A
Burst Read MAG | IMU Application
See p.4
70 (0x46) r r Acel Scale Factor | see p.13
71 (0x47) r r Rate Scale Factor | see p.14
72 (0x48,0x49) r N/A MAGX Hard Iron | MSB in reg.72
(TBD)
74 (0x4A,0x4B) r N/A MAGY Hard Iron | MSB in reg.74
(TBD)
76 (0x4C,0x4D) r N/A MAG SF Soft | MSB in reg.76
Iron (TBD)
78 (0x4E,0x4F) r N/A MAG Angle Soft | MSB in reg.78
(TBD)
80 (0x50) r/w N/A MAG Align com- | (TBD)
mand
81 (0x51) r N/A MAG Align sta- | (TBD)
tus
82,83,84,88,89 r r BCD format
(0x52 Unit serial
0X53,0X54,0X58,0X59) number
86, 87 (0x56, |r r Product ID
0x57) BCD
format
3000 - Open-
IMU300
3300 - Open-
IMU330
90,91 (Ox5A, | r r Master status see.p 10
0x5B)
92,93 (0x5C, | r r HW status see.p 11
0x5D)
94,95 (Ox5E, | r r SW status see.p 12
0x5F)
112 (0x70) r r/w Accel Range see.p 13
113 (0x71) r r/'w Rate Range see.p 14
116,117 r/w r/w Unit Orientation MSB in reg.78
(0x74,0x75) See p.6
118 (0x76) r/w r/w Save Configura- | See p.9
tion
120 (0x78) r/w r/w See p.7
Rate LPF

Continued on next page

6.5. OpenIlMU SPI Messaging Framework

88

OpenlMU Documentation

Table 2 — continued from previous page
126 (Ox7E) r r

HW Version

127 (0x7F) r r
SW Version

Note 1: Rate sensors scale is 64 LSB/dps. See p.13
Note 2: Accelerometer sensors scale is 4000 LSB/G. See p.14
Note 3: Magnetometer sensors scale is 16354 LSB/Gauss.
Note 4: Temperature sensors data conversion:
Temperature (deg C) = Temp_Register_Value * 0.073111172849435 + 31.0
3. OpenIMU SPI Register Read Methodology

SPI master initiates a register read (for example register 0x04) by clocking in the address followed by 0x00, i.e.
0x0400, via MOSI. This combination is referred to as a read-command. It is followed by 16 zero-bits to complete the
SPI data-transfer cycle. As the master transmits the read command over MOSI, the OpenIMU transmits information
back over MISO.

In this transmission, the first data-word sent by the OpenIMU (as the read-command is sent) consists of 16-bits of
non-applicable data. The subsequent 16-bit message contains information stored inside two consecutive registers (in
this case registers 4 (MSB) and 5(LSB)).

Figure 1 illustrates register read over SPI interface:

Cs

CLK

MOSI 0x0400 O0x0000

4. OpenIMU SPI Block Mode Read Methodology

User can implement reading blocks of data with arbitrary length and information. Specific dedicated register address
will indicate request specific block of data.

For example, register address Ox3e (62) indicates request for reading data block containing current data from unit
sensors. Next table lists corresponding parameters:

6.5. OpenIlMU SPI Messaging Framework 89

OpenlMU Documentation

Table 2. Block mode message format

Parameter Numer | Size (bytes) | Desctiption

Status 2 Unit Status (see.p 10)

X_Rate 2 Rate Sensor output (X) (64 LSB/deg/s)
Y_Rate 2 Rate Sensor output (Y) (64 LSB/deg/s)
Z_Rate 2 Rate Sensor output (Z) (64 LSB/deg/s)
X_Accel 2 Accel Sensor output(X) (4000LSB/G)

Y_Accel 2 Accel Sensor output(Y) (4000 LSB/G)
7Z._Accel 2 Accel Sensor output(Z) (4000 LSB/G)
Temp 2 Unit Temperature

Read of data block begins when the master requests a read from specific register address (i.e. 0x3E). Figure 2

illustrates the read sequence:

s | B

CLK

MOSI — Ox3EDD>—<DxDOOD>—<DxOOOD >———— _
; ; , BOARD

MISO { A ngxx_m}--_

Note: Number of SPI clock pulses should be exactly equal to the length of predefined data packet (in this case — 144

(16 for address 128 for data)) otherwise interface may go out of sync.
For VG_AHRS/INS application examples next block message supported (register 0x3D):
Table 3. Extended VG block mode message format

Parameter Number | Size (bytes) | Description

Status 2 Unit Status (see p.10)

X_Rate 2 Rate Sensor output (X) (64 LSB/deg/s)
Y_Rate 2 Rate Sensor output (Y) (64 LSB/deg/s)
Z_Rate 2 Rate Sensor output (Z) (64 LSB/deg/s)
X_Accel 2 Accel Sensor output(X) (4000LSB/G)
Y_Accel 2 Accel Sensor output(Y) (4000 LSB/G)
Z_Accel 2 Accel Sensor output(Z) (4000 LSB/G)
Temp 2 Unit Temperature

Roll 2 Unit Roll Angle (65536/(2*PI))LSB/RAD
Pitch 2 Unit Pitch Angle (65536/(2*PI))LSB/RAD
Yaw 2 Unit Yaw angle (65536/(2*PI)ILSB/RAD

6.5. OpenIlMU SPI Messaging Framework

90

OpenlMU Documentation

For units with built-in magnetometer (OpenIMU330ZI) in some application examples next block message supported
(register 0x3F):

Table 4. Extended MAG block mode message format

Parameter Number | Size (bytes) | Description

Status 2 Unit Status see p.10

X_Rate 2 Rate Sensor output (X) (64 LSB/deg/s)
Y_Rate 2 Rate Sensor output (Y) (64 LSB/deg/s)
7Z_Rate 2 Rate Sensor output (Z) (64 LSB/deg/s)
X_Accel 2 Accel Sensor output(X) (4000LSB/G)
Y_Accel 2 Accel Sensor output(Y) (4000 LSB/G)
Z_Accel 2 Accel Sensor output(Z) (4000 LSB/G)
Temp 2 Unit Temperature

MAG_X 2 Mag sensor output (X) (16384 bits/Gauss)
MAG_Y 2 Mag sensor output (Y) (16384 bits/Gauss)
MAG_Z 2 Mag sensor output (Z) (16384 bits/Gauss)

5. OpenIMU SPI Register Write Methodology

The SPI master device can perform write into any register. The unit reaction on write operation is completely defined
by the user. By default, corresponding data written without any reaction from unit. Written data can be read back.
Unlike reads, writes are performed one byte at a time.

The following example highlights how write-commands are formed:
¢ Select the write address of the desired register, for example 0x35
» Change the most-significant bit of the register address to 1 (the write-bit), e.g. 0x35 becomes 0xB5

* Create the write command by appending the write-bit/address combination with the value to be written to the
register (for example 0x04) - 0xB504

Figure 3 illustrates the register write over SPI:

Cs
MOSI D=B504

waso

6. OpenIMU Orientation programming

OpenIMU Orientation can be changed dynamically by writing corresponding values into the SPI registers 0x74 (MSB)
and 0x75 (LSB). Data into register 0x74 should be written first. There are 24 possible orientation configurations (see

6.5. OpenIlMU SPI Messaging Framework 91

OpenlMU Documentation

below). Setting/Writing the field to anything else has no effect.
Table 5. OpenIMU Orientation field values

Registers 0x74/0x75 | X Y Z
0x0000 +Ux | +Uy | +Uz
0x0009 -Ux | -Uy | +Uz
0x0023 -Uy | +Ux | +Uz
0x002A +Uy | -Ux | +Uz
0x0048 +Ux | -Uy | -Uz
0x0062 +Uy | +Ux | -Uz
0x006B -Uy | -Ux | -Uz
0x0085 -Uz | +Uy | +Ux
0x008C +Uz | -Uy | +Ux
0x0092 +Uy | +Uz | +Ux
0x009B -Uy | -Uz | +Ux
0x0041 -Ux | +Uy | -Uz
0x00C4 +Uz | +Uy | -Ux
0x00CD -Uz | -Uy | -Ux
0x00D3 -Uy | +Uz | -Ux
0x00DA +Uy | -Uz | -Ux
0x0111 -Ux | 40z | +Uy
0x0118 +Ux | -Uz | +Uy
0x0124 +Uz | +Ux | +Uy
0x012D -Uz | -Ux | +Uy
0x0150 +Ux | +Uz | -Uy
0x0159 -Ux | -Uz | -Uy
0x0165 -Uz | +Ux | -Uy
0x016C +Uz | -Ux | -Uy

The default factory axis setting for the OpenIMU300ZI for SPI interface is (-Uy, -Ux, -Uz) which defines the connector
pointing in the +Z direction and the +X direction going from the connector through the serial number label at the end
of the unit. The user axis set (X, Y, Z) as defined by this field setting is depicted in figure below: Figure 4 illustrates
unit orientation:

) +X (Ux) +Y (U
.

o Roll
Pitch

Yaw
+Z (Uz)

6.5. OpenIlMU SPI Messaging Framework 92

OpenIMU Documentation

7. OpenIMU Digital Low Pass Filter selection

OpenIMU low pass filters can be changed dynamically for accelerometers and rate sensors writing corresponding
values into the SPI registers 0x38 (for accelerometers) and 0x78 (for rate sensors). There are 11 possible low pass
filter options (see below). Setting/Writing the field to anything else has no effect.

Table 6. OpenIMU Digital filter choices

Cutoff Frequency Filter Type
Value
Hex (dec)
0x00 (0) N/A Unfiltered
0x03 (3) 40 Hz Bartlett
0x04 (4) 20 Hz Bartlett
0x05 (5) 10 Hz Bartlett
0x06 (6) 5Hz Bartlett
0x30 (48) 50 Hz Butterworth
0x40 (64) 20 Hz Butterworth
0x50 (80) 10 Hz Butterworth
0x60 (96) 5Hz Butterworth

8. OpenIMU DATA READY signal rate

OpenIMU DATA READY signal rate can be changed dynamically by writing corresponding values into the SPI register
0x37. There are 10 possible options (see below). Setting/Writing the field to anything else has no effect.

Table 7. OpenIMU SPI ODR Rate choices

Value Data Ready signal
Hex (dec) rate (Hz)
0x00 (0) 0

0x01 (1) 200 Hz (default)
0x02 (2) 100 Hz

0x03 (3) 50Hz

0x04 (4) 25 Hz

0x05 (5) 20 Hz

0x06 (6) 10 Hz

0x07 (7) S5Hz

0x08 (8) 4 Hz

0x09 (9) 2 Hz

9. Saving unit configuration

Some configuration parameters can be saved in EEPROM and become active upon next unit restart (reset or power
cycle). To save all parameters value 0 or OxFF needs to be written to the register 0x76. It’s possible to save only
specific parameter writing corresponding register address into register 0x76. Valid addresses are: 0x37, 0x38, 0x70,
0x71, 0x74, 0x75, 0x78.

10. Master Status Register

Master status register reflects current status of the unit. Next status indication bits are available:

6.5. OpenIlMU SPI Messaging Framework 93

OpenIMU Documentation

Table 8. Master Status Register

Bit Status

0 Master Fail (1 - error)

1 HW Error (1 - error)

2 Reserved

3 SW Error (1 - error)
4-11 Reserved

12 Sensor Status (1 - error)
13 -15 | Reserved

11. HW Status Register
HW status register reflects current status of the unit. Next status indication bits are available:

Table 9. HW Status Status Register

Bit Status

0-1 Reserved

2 Sensor Error (1 - error)
3 Mag Error (1 - error)

4 Accel Error (1 - error)
5

6

Gyro Error (1 - error)
- 15 | Reserved

12. SW Status Register

SW status register reflects current status of the unit. Next status indication bits are available:

Table 10. SW Status Status Register

Bit Status

0 Algorithm Error (1 - error)
1 Data Error (1 - error)

2 Cal CRC Error (1 - error)
3-15 | Reserved

14. Accelerometer sensors scale factors and range
Next accelerometer scale factors and ranges are applicable:

Table 11. Accelerometer sensors scale factors and ranges

Unit Range & scale factor | Value in register 0x70 | Value in register 0x46
OpenIMU300ZI | 8G, 4000 LSB/G 8 (1) 4 (r)
OpenIMU330BI | 8G, 4000 LSB/G 8 (r/w) 4 (r)
OpenIMU330BI | 16G, 2000 LSB/G 16 (r/w) 2 (1)

15. Rate sensors scale factors and range

Next rate sensors scale factors and ranges are applicable:

Table 11. Rate sensors scale factors and ranges

6.5. OpenIlMU SPI Messaging Framework

94

OpenlMU Documentation

Unit Range & scale factor | Value in register O0x71 | Value in register 0x47
OpenIMU300ZI | 500 dps, 64 LSB/dps | 8 (r) 64 (1)
OpenIMU330BI | 500 dps, 64 LSB/dps 8 (r/'w) 64 (1)
OpenIMU330BI | 1000 dps, 32 LSB/dps | 16 (r/w) 32 (r)
OpenIMU330BI | 2000 dps, 16 LSB/dps | 32 (r/w) 16 (r)

16. Suggested Operation

The following operational procedure and timing specifications should be adhered to while communicating with the
OpenIMU300/0OpenIMU330 via SPI interface to ensure proper system operation. These points are further highlighted
later in this section.

Startup Timing
The following timing applies at system startup (Figure 4):

* During system setup, the OpenIMU should be held in reset (nRST line held low) until the SPI master
is configured and the system is ready to begin communications with the OpenIMU

» After releasing the reset line, the OpenIMU requires about 250-500 msec (tSystem Delay) before
the system is ready for use

» Data best to be read from the OpenIMU right after falling edge of DATA REady signal. But at if
readings are not synced to DATA READY signal - the latest available data sample sample will be
provided.

Figure 5 illustrates OpenIMU startup timings:

Power-on
of master

v

nRST pulled low
following power-on

Vee
nRST released after
> | / system configured
nRST held low during
ARST master boot-up sequence
TReset Delay
<+—p
DR /
Set nSS low to read data
4 when Data-Ready line is set
nSS \ /
Figure 5. Startup Timing
SPI Timings

The timing requirements for the SPI interface are listed in Table 12 and illustrated in Figure and Figure. In addition,
the following operational constraints apply to the SPI communications:

6.5. OpenIlMU SPI Messaging Framework 95

OpenIMU Documentation

* The unit operates with CPOL = 1 (polarity) and CPHA =1 (phase)

 Data is transmitted 16-bits words, Most Significant Bit (MSB) first

Table 12. SPI Timing Requirements

Parameter

Description

Value for
OpenIMU300ZI

Value for
OpenIMU330BI

Units

fCL

SPI clock fre-
quency

1

1.2

MHz

tDELAY

Time between
successive

clock cycles

9 (min)

16

uSec

tSU,NSS

nSS setup time
prior to

clocking data

133

133

nSec

th,NS

nSS hold time
following

clock
signal

100

100

nSec

tV,.MISO

Time after falling
edge

of previous
clock-edge

that MISO
databit is invalid

25

25

nSec

tSU,MOSI

Data input setup
time

prior to rising
edge of clock

25

25

nSec

th, MOSI

Data input hold
time following
rising edge of
clock

nSec

6.5. OpenIlMU SPI Messaging Framework

96

OpenlMU Documentation

a [A

tpELay

n

W

|
|'\.

nss

tsunss

CLK

MISO —< MSB ><
most ||/ >< MSB X bit 14

by miso
‘ v

|
T T

th oS!

Figure 6.SpI Timing Diagram

6.6 Settings Modules

Configuration parameters in EEPROM
OpenIMU software framework provides possibility for user to store arbitrary configuration parameters in
nonvolatile EEPROM. These parameters will be validated and applied to system upon reset or power-up.
Parameters which passed validation will override default factory settings. User EEPROM has size 16KB.
Each parameter in user EEPROM has size 8 bytes (64-bit word), so user EEPROM can contain up to 2K
parameters. If desired one can use few consecutive parameters to store arbitrary value or data structure.
One parameter is good for a value of double or long long type. Also it can be considered as 8 bytes of
arbitrary data (string or array). There are few pre-allocated recommended parameters which can be useful
while working with OpenIMU software framework. Initial definition of parameters structure located in

file UserConfiguration.h. New arbitrary parameters are welcome.

97

6.6. Settings Modules

OpenlMU Documentation

/// User defined configuration structure
///Please notice, that parameters are 64 bit to accommodate double types as_
—well as string or byte array types

typedef struct { uint64_t dataCRC; /// CRC of user configuration structure CRC-16 uint64_t dataSize;
/Il Size of the user configuration structure

int64_t userUartBaudRate; /// baud rate of user UART, bps. /// valid options are: /// 4800 ///
9600 /// 19200 /// 38400 /// 57600 /// 115200 /// 230400 /// 460800

uint8_t userPacketType[8]; // User packet to be continuously sent by unit /// Packet types de-
fined in structure UserOutPacketType /// in file UserMessaging.h

int64_t userPacketRate; /// Packet rate for continuously output packet, Hz. /// Valid settings
are: 0,2, 5, 10, 20, 25, 50, 100, 200

int64_t IpfAccelFilterFreq; /// built-in Ipf filter cutoff frequency selection for accelerometers int64_t
IpfRateFilterFreq; /// built-in Ipf filter cutoff frequency selection for rate sensors

/Il Options are: /// O - Filter turned off /// 50 - Butterworth LPF SOHZ /// 20 - Butterworth
LPF 20HZ /// 10 - Butterworth LPF 10HZ /// 05 - Butterworth LPF 5HZ /// 02 - Butterworth
LPF 2HZ /// 25 - Butterworth LPF 25HZ /// 40 - Butterworth LPF 40HZ

uint8_t orientation[8]; /// unit orientation as string /// “SFSRSD” /// Where S is sign (+ or -) /// F -
forward axis (X or Y or Z) /// R - right axis (X or Y or Z) /// D - down axis (X or Y or Z) /// For
example “+X+Y+Z”

[k st st st sie s stesesfeshesfesieshe e shesfeshesfeshesfesieshesfesesfe sk sfeshesfesieshesteshesfesesfesiesfe s shesfe ke sfeshesfe sl sieslesie sk sfeskesfeslesfesieskesieok ek deokoloiokgokdokdoksdeiokdokdorsg

/I here is the border between arbitrary parameters and platform configuration parameters
[e R

// place new arbitrary configuration parameters here // parameter size should even to 8 bytes // Add
parameter offset in UserConfigParamOffset structure if validation or // special processing required

} UserConfigurationStruct;
Default configuration

Default system parameters reside in the gDefaultUserConfig structure in file UserConfiguration.c. They
are becoming active each time new application image is loaded to the unit or upon reception of the “rD”
command.

Mapping different values into 64-bit parameter

Below provided recommended mapping of the values of different types into 64-bit parameter. The map-
ping though can be arbitrary and in that case should be processed accordingly.

1. Mapping of 4-byte integer into 64-bit parameter (value is in Little Endian format)

0O |1]2/|3 41516 |7
LSB MSB | O|O[O0|O

2. Mapping of 2-byte integer into 64-bit parameter (value is in Little Endian format)

0 |1 41516
LSB | MSB|0[0|0O|0]|0|O0

[\
W
3

3. Mapping of 4-byte floating point value into 64-bit parameter (value is in Little Endian format)

6.6. Settings Modules 98

OpenlMU Documentation

LSB MSB | O|O[0|O

4. Mapping of 8-byte double value into 64-bit parameter (value is in Little Endian format)

0O | 1]2|3]4|5]6]|7
LSB MSB

5. Mapping byte array or string into 64-bit parameter

Byte (character) indexes match offset in the 64-bit parameter

(0f1[2[3[4[5[6][7]

Adding new parameter
One can arbitrary add new configuration parameters. The steps are:

1. Add required parameter into the UserConfigurationStruct in the file UserConfiguration.h after
system parameters “border” (see above).

2. Add new configuration parameter enumerator into UserConfigParamOffset in the file UserConfigu-
ration.h after USER_LAST_SYSTEM_PARAM.

3. Add default value of new parameter into structure gDefaultUserConfig in file UserConfiguration.c
(if desired)

4. Add validation of new parameter into function UpdateUserParameter (if desired) or explicitly use
parameter at your discretion

Changing configuration parameters

Configuration parameters can be changed any time by sending specific commands (messages) to the unit
((“uP” “uA” “uC”). Upon reception of corresponding message parameters are validated (if desired),
placed into gUserConfiguration structure and applied to the unit (if desired). See section Messaging
Modules for details. Updated parameters will last until unit reset or power cycle.

Retrieving configuration parameters.

Configuration parameters can be read from unit any time by sending commands “gC” “gP” or “gA” (see
messaging-modules).

Saving configuration parameters

If desired, updated parameters can be saved into EEPROM and will be permanently active until changed.
It can be achieved by sending “sC” command to the unit. Upon reception of this command gUserConfig-
uration structure saved into EEPROM.

Restoring default configuration

If desired, default configuration can be restored and saved into EEPROM. It can be achieved by sending
command “rD” to the unit.

6.7 Tutorial APP

A simple static tilt sensor demo is provided here to show how to add your own algorithm and output algorithm results.

6.7. Tutorial APP 99

OpenlMU Documentation

OpenIMU provides a user-friendly interface to add your own algorithms. To do that, the user need to get sen-
sor data, run the algorithm and output algorithm results. All interfaces related to these operations are handled in
src/dataProcessingAndPresentation.c. And all user codes implementing the algorithms and results packaging are lo-
cated in src/user/ directory.

6.7.1 Get algorithm input

The platform provides APIs to access all available sensor data, as shown in the following table.

Sensors Get sensor data API

Accelerometer void GetAccelsData(double *data)
Gyroscope void GetRatesData(double *data)
Magnetometer void GetMagsData(double *data)

GPS void GetGPSData(gpsDataStruct_t *data)

Accelerometer temperature

void GetAccelsTempData(double *temps)

Gyroscope temperature

void GetRatesTempData(double *temps)

Board temperature

void GetBoardTempData(double *temp)

Usually, the accelerometer and gyroscope data are already temperature-calibrated.

6.7.2 Run the algorithm

A user defined algorithm should provide its main procedure as:

void xRunUserNavAlgorithm(double xaccels, double xrates, int dacqRate)

where accels and rates are pointers to corresponding sensor measurements, and dacqRate is the sensor sampling rate.

This procedure is implemented in src/user/userAlgorithm.c as follows:

void xRunUserNavAlgorithm(double xaccels, double =*rates, double »*mags,

gpsDataStruct_t =*gps, int dacgRate)

{

/) ——— get a
float a[3]; // accel of this step
al0] = accels[0];
al[l] = accels[1];
al2] = accels[2];
/) —— calculate
results[2] alo0];
results[3] = al[l];

results[4] al2];

float accel_norm sgrt(a[0]*al0]

al[0] /= accel_norm;

al[l] /= accel_norm;

al[2] /= accel_norm;

results[0] = asin(a[0]) * R2D;
results[1l] = atan2(-all]l, —-al2]) =
[/ e return

return &results;

+ al[llxall]l + al[2]xal2]);

R2D;

6.7. Tutorial APP

100

OpenlMU Documentation

It just gets the accelerometer measurement, normalizes it, calculates pitch and roll angles, and returns the results. I
keep all the input parameters here. Indeed, I need only accels. The user could remove unused parameters in your
algorithm.

results is a global variable declared as

// algorithm results, [pitch roll ax ay az], in units of deg and g
static float results[5];

and R2D is a macro converting radian to degree:

#define R2D 57.2957795130823

User may also need to implement an algorithm initialization procedure. It is not necessary in this demo, but will be
shown here.

void InitUserAlgorithm()
{
// place additional required initialization here
// initialize sample rate and period
results[0] 0.0;
results[1] = 0.0;

Now, a simple user-fined algorithm is done. The framework will automatically call InitUserAlgorithm at the initial-
ization stage, and periodically call RunUserNavAlgorithm to run the user-defined algorithm and get results.

6.7.3 Output results via debug UART
This section shows how to use the debug UART (default baud rate is 38400) on the EVB to output algorithm results.
The user could also output other information the user are interested in.

To use the debug UART, the user needs to include debug.h. For example, I want to output algorithm results after the
algorithm is called in dataProcessingAndPresentation.c.

¢ include the header file in dataProcessingAndPresentation.c.

#include "debug.h"

¢ output algorithm results. The results are converted to plain text and then transmitted via the debug UART. The
user can also choose to encode the results per user requirements.

// Output results via debug UART. Downsampled by osr due to limited UART bandwidth
static int out_cntr = 0;
int osr = 8;
out_cntr++;
if (out_cntr==osr)
{
out_cntr = 0;
// generate output string from results
float *tlt = (float«*)results;
char buffer[128];
sprintf (buffer,
"pitch: \troll: \tax: \tay: \taz: \n",
tlt[0], tlt[1l], tltf[2], tlt([3], tlt[4]);
// output to debug UART
DebugPrintString (buffer);

6.7. Tutorial APP 101

OpenlMU Documentation

Compile the project, upload the firmware, and the user can get result via debug UART.

6.7.4 Implementing user-defined packets via UART

The debug UART is mainly intended for debug usage. The user may want to output algorithm results via the interface
UART (default baud rate is 57600) on the EVB. OpenIMU provides an easy-to-use framework for the user to define
your own packets. User-defined packets are declared and implemented in UserMessaging.h and UserMessaging.c.

* Add your packet code in UserMessaging.h.
I added a USR_OUT_TLT packet as an example.

// User input packet codes, change at will
typedef enum {

USR_OUT_NONE = 0, // O
USR_OUT_TEST, // 1
USR_OUT_DATAL , // 2
USR_OUT_TLT, // 3

// place output packet definitions here
USR_OUT_MAX
}UserOutPacketType;

* Add encoding procedure in UserMessaging.c.

User defined packets are encoded by this procedure:

BOOL HandleUserOutputPacket (uint8_t =xpayload, uint8_t =payloadLen)

After I added my encoding codes, this procedure is as follows.

BOOL HandleUserOutputPacket (uint8_t +payload, uint8_t =*payloadLen)
{

static uint32_t _testvVal = 0;

BOOL ret = TRUE;

switch (_outputPacketType) {
case USR_OUT_TEST:

{ uint32_t =testParam = (uint32_tx) (payload);
xpayloadLen = USR_OUT_TEST_PAYLOAD_LEN;
*testParam = _testVal++;

}

break;

case USR_OUT_DATAIl:
{ int n = 0;

double accels[3];

double mags|[3];

double rates[3];

float xsensorData = (float«) (payload);

xpayloadLen = USR_OUT_DATAl_PAYLOAD_LEN;

GetAccelsData (accels);

for (int i = 0; 1 < 3; i++, n++){
sensorData[n] = (float)accels[i];

}

GetRatesData (rates) ;

for (int i = 0; 1 < 3; i++, n++){
sensorData[n] = (float)rates[i];

}

GetMagsData (mags) ;

(continues on next page)

6.7. Tutorial APP

102

OpenlMU Documentation

(continued from previous page)

for (int i = 0; 1 < 3; i++, n++){
sensorData[n] = (float)mags[i];

}

break;
// place additional user packet preparing calls here
// case USR_OUT_XXXX:

// *payloadLen = YYYY; // total user payload length, including user,,
—packet type

// payload[0] = ZZZZ; // user packet type

// prepare dada here

// break;

case USR_OUT_TLT:
{
if (tlt == NULL)
{
+payloadLen = 0;
ret = FALSE;
}
else
{
// get resutls
+*payloadLen = sprintf ((char+)payload,
"pitch: \troll: \tax: \tay: \taz: \n",
tlt[0], tlt[1l], tlt[2], tlt([3], tltl[4]);

}

break;
default:
xpayloadLen = 0;
ret = FALSE;
break; /// unknown user packet, will send error in response

return ret;

This procedure will be called at the defined rate by the framework.

The framework default outputs calibrated IMU sensor data. To output your own packets, the user should tell the
framework the packet code of your packet, and then feed the algorithm results to the encoding procedure we just

implemented above.
* Register the user-defined packet in the framework.

This can be done by calling setOutputPacketCode when initializing user-defined algorithm in dataProcessingAnd-
Presentation.c. To use setOutputPacketCode, the user need

#include "SystemConfiguration.h"

and then call it in

void initUserDataProcessingEngine ()

{

InitUserDataStructures(); // default implementation located in file UserData.c
InitUserFilters(); // default implementation located in file UserFilters.

—C

(continues on next page)

6.7. Tutorial APP 103

OpenlMU Documentation

(continued from previous page)

InitUserAlgorithm() ; // default implementation located in file user_
—algorithm.c
setOutputPacketCode (0x7A32) ; // set output packet to user defined packets

In this way, the default packet will be replaced by the user-defined packet.
* Feed algorithm results to the encoding procedure.

In dataProcessingAndPresentation.c, after calling the user-defined algorithm, the framework will call

WriteResultsIntoOutputStream(results) ; // default implementation located in file
—file UserMessaging.c

to feed results to UserMessaging.c. WriteResultsIntoOutputStream is implemented like this:

void WriteResultsIntoOutputStream(void *results)

{
// implement specific data processing/saving here
tlt = (floatx)results;

where tlt is a global variable declared as

’static float *tlt; // pointer to algorithm results

Now, compile the project, upload the firmware, and the user can get results via the interface UART.

6.8 CAN J1939 Messaging

CAN J1939 Example Application For OpenIMU330RI
* The example can be used as is or customized to suit the customer’s system requirements.

* The SAE J1939 standards document set specifies the requirements for systems based on J1939 messaging. The
SAE site provides a full list of the J1939 standard document set - Link

¢ In particular:

— Section 3 of the SAE J1939 standards document provides the high-level technical requirements for systems
that use J1939 messaging.

— Section 5 of the SAE J1939-21 standards document provides the technical requirements for J1939 data
link layer for all SAE J1939 applications.

— The license for using an SAE standards document do not allow distribution of the documents. SAE J1939
documents can be purchased online at the IHS Standards Store - Link

— There are many J1939 related documents available that can be freely distributed. We provide two such
documents here:

* Vector Informatik GmbH provides a document which is a good introduction to J1939 download
link.

* Kvaser provides a J1939 Overview document - download link.

Note: If you use any links here, user your browser back button to return

6.8. CAN J1939 Messaging 104

https://www.sae.org/standardsdev/groundvehicle/j1939a.htm
https://global.ihs.com/search_res.cfm?&rid=Z56&mid=SAE&input_doc_number=J1939&input_doc_title=&sort=RELEVANCE

OpenlMU Documentation

The following pages describe the CAN J1939 Example Application Details:
* VSCode project for the J1939 CAN Example Application
* Application Dataflow and Synchronization diagram

» Examples of the J1939 CAN messages implemented in the application.

6.8.1 VSCode project for the J1939 CAN IMU Example Application

The IMU project for OpenIMU300RI is the example which implements basic IMU functionality and transmits cali-
brated sensors data over CAN bus using J1939 protocol.

e The most important files are found in the bottom level ‘include’, ‘include/API’, ‘lib/J1939/include’,
‘1ib/J1939/src’, ‘src’, and ‘src/user’ directories.

» These directories provide the user visible and modifiable files, including the example application code and the
header files that provide the function prototypes for the user and library code and critical definitions.

* The directory structure and files are shown in the following screen capture from VSCode.
6.8.2 Example J1939 Application Diagrams

The following diagrams illustrate:

* The typical data processing flow in OpenIMU300RI applications

Note: An internal timer, set to provide a 200Hz tick, provides the basic timing synchronization for all task functions.

6.8.3 CAN J1939 Messages

In next chapter provided description of the J1939 messages used in OpenIMU300RI application examples. Users can
keep the implemented messages as is, modify them, or add new messages.

The following message categories are used:
Requests

Set Requests. Set requests are used by Electronic Control Units (ECUs) to configure the Open-
IMU3O00RI on the network.

Get Requests. Get requests are used for requesting information from the OpenIMU300RI. If
the request is for the OpenIMU300RYI, it will build and send a response packet to the requesting
node.

Data Packets

Data packets are broadcast periodic messages with controllable rates, usually from 0 Hz (quiet
mode) to 100Hz. The types of transmitted by OpenIMU300RI messages can be controlled by
Set Requests. Also data packets can be arbitrary requested from OpenIMU by external ECUs
using Get Requests.

6.8. CAN J1939 Messaging 105

OpenlMU Documentation

4 OPENIMUZ00RI-CAM_J1939 (WORKSPACE)
4 CAN_I1939

b .pioenvs

-

.piolibdeps
b .vscode
4 include
4 AP
C userAPLh
C FreeRTOSConfig.h
C osresources.h
C taskDataAcquisition.h
b ldscripts
4 ib
b CLI
4]J1939
4 include
C canh
C =ae j19358.h
C taskCanCommunication)1939.h
4 sre
C canc
C =ae j1939_slave.c
C sae j1935.c
C taskCANcommunication)1939.c
readme.txt
4 <rc
4 user
dataProcessingAndPresentation.c
UserAlgorithm.c
UserAlgorithm.h
UserConfiguration.c
UserConfiguration.h
UserMessagingCAN.c
UserMessagingCAMN.h
UserMessagingUart.c

a8 a6 686060800

UserMessagingUart.h
C main.c

C taskDataAcquisition.c

6.8. CAN J1939 Messaging ;. pce folder from VSCode CAN J1939 Workspace 106

OpenlMU Documentation

200 Hz Timer tick

}

Waiting for next
cycle

Streaming Sensors
Data out via Serial
interface (if enabled)

Sensors Data
processing by user
algorithm

Data Acquisition Task

Background

sensors data

sampling

Sensors Data

Filtering (if enabled)

Sensors Data
Calibration

200 Hz Timer tick
Waiting for next
cycle

Resolving address
claim on CAN bus (if
needed)

Processing incoming
over CAN bus
requests/commands

Preparing and
sending periodic
messages (1Hz —

100Hz) with sensors
data and/or user

algorithm output
data over CAN bus
using J1939 Protocol

CAN Data Transmission/Processing Task

Fig. 2: J1939 Example Application data processing and events scheduling

CAN J1939 Set Request Messages

Set Commands

The following Set requests have been implemented in J1939 based application examples. Users can modify provided
requests and/or implement their own unique commands.

6.8. CAN J1939 Messaging

107

OpenIMU Documentation

Table 3: Set Commands

Request Purpose
PF PS PGN Payload
(dec) (dec) Length
(bytes)
Save Configura- | 255 81 65361 3
i
on Save all
configuration
data to
non-volatile
memory
Reset Algorithm | 255 80 65360 3 Reset algorithm
to initial condi-
tions
Mag Alignment | 255 94 65374 2 Mag alignment
and status re-
quest
Set Packet Rate | 255 85 65365 2
Divid
rer Set rate dividers
to in-
crease/decrease
rate packets are
set
Set Data Packet | 255 86 65366 2
T
ype(s) Select packet
types to be sent
periodically
255 87 65367 3
Set Digital Set LPF cutoff
Filters frequency for
Cutoff rate
Frequencies sensors and
accelerometers
Set Orientation 255 88 65368 3 Set unit orienta-
tion
Set Lever Arm | 255 95 65375 8 Set unit Lever
(TBD) Arm (where ap-
plicable)
255 240 65520 8
Set Bank of PS Reconfigure PS
Numbers for numbers for set
Bank0 requests
255 241 65521 8
Ser Bank of PS,) Reconfigure PS
6 m 5,@ 0,! 9)39 Messaging numbers for sc“!tc’8
Bankl requests

OpenlMU Documentation

Note: PS values for all but the “Set Bank of PS Numbers for BankO/Bank1” Set Commands can be changed by the
the commands “Set Bank of PS Numbers” (see below). Updated values can be saved in nonvolatile memory and will
be active upon following system restart/power-up. Provided in the table PS values are default values.

Save Configuration

The next table provides the descriptions of the payload fields of the command and response messages.

Table 4: Save Configuration Request/Response Payload Fields

Byte | Description/Values

0 Type: 0 = Request, 1 = Response

1 Destination Address

2 Response: 0 = Fail, 1 = Succeed
Reset Algorithm

The following table provides the descriptions of the payload fields of the command and response mes-
sages.

Table 5: Reset Algorithm Request/Response Payload Fields

Byte | Description/Values
0 Type: 0 = Request, 1 = Response
1 Destination Address
2 Response: 0 = Fail, 1 = Succeed

Mag Alignment (INS Application Example)

The following tables provides the descriptions of the payload fields of the command and response mes-

sages.
Table 6: Mag Alignment Request Payload Fields
Byte Description/Values
0 Destination Address
1

Commands:

0 - Status Request

1 - Start Alignment
5 - Confirm and Save

6.8. CAN J1939 Messaging 109

OpenIMU Documentation

Table 7: Payload Fields of 64 bit Response

Bits Description Value
bits 0:7 Command 0 - Status request,
1 - Start alignment
bit 8:15 Alignment State 0 - Idle
12 - Alignment in process
11, 13 - Data Collection
complete
bit 16:27 Estimated Hard Iron X Bias, -8 Gto+8 G, scale 1/256
Gauss G/bit, offset -8G
bits 28:39 Estimated Hard ron Y Bias, -8 Gto+8 G, scale 1/256
Gauss G/bit, offset -8G
bits 40:49 Estimated Soft Iron Ratio 0to 1 1/1024 per Lsb
bits 50:63 Estimated Soft Iron Angle -3.14 to 3.14 RAD, scale
0.0015339, offset -3.14159
Set Packet Rate Divider

The following table provides the values of the packet rate divider response payload

6.8. CAN J1939 Messaging

110

OpenIMU Documentation

Table 8: Set Packet Rate Divider Request/Response Payload Fields
Byte Description Byte Value
0 Unique
Destination
Address
1 Packet Divider Value Byte Value - Packet Broadcast Rate (Hz)

0 - Quiet Mode - no broadcast
1 - 100 (default)

2-50

4-25

5-20

10 (0x0a) - 10

20 (0x14) -5

25 (0x19) -4

50 (0x32) -2

Set Periodic Data Packet Type(s)

The following table provides the Set Data Packet Type(s) payload. Each bit in the request payload enables
specific data packet for periodic transmission. Any combination of data packets can be chosen.

Table 9: Set Data Packet Type(s) Field

Byte Description Byte Value
0 Destination Address Unique
1
Selected Data Data Packet Type(s) Bitmask:
Packet Type(s) Bit 0 - SS12
Bitmask (LSB) Bit 1 - Angular Rate
Bit 2 - Acceleration
Bit 3 - Magnetometer
2
Selected Data Reserved
Packet Type(s)
Bitmask (MSB)

Set Digital Filter Cutoff Frequencies

The following table provides descriptions of the request payload

6.8. CAN J1939 Messaging

111

OpenIMU Documentation

Table 10: Digital Filter Cutoff Frequencies Request Payload

Description/Values Values

Payload

Byte

0 Destination Address Unique

1 0,2, 5,10, 25, 40, or 50
Cutoff Frequencies (Hz) for
Angular Rate Sensors

2 0,2,5, 10, 25, 40, or 50
Cutoff Frequencies (Hz) for
Accelerometer Sensors

Set Orientation

The following table shows the payload layout

Table 11: Set Orientation Payload Layout

Byte Meaning Value
0 Destination Address Unique
1 Orientation Value (MSB)
see table below
2 Orientation VAlue (LSB)
see table below

The following table provides the orientation values and meanings:

6.8. CAN J1939 Messaging

112

OpenIMU Documentation

Table 12: Set Orientation Field Descriptions

X/Y/Z Axis X/Y/Z Axis
Orientation Orientation
Value Value(cont)
0x0000 +Ux +Uy +Uz (de- | 0x00C4 +Uz +Uy -Ux
fault)
0x0009 -Ux -Uy +Uz 0x00CD -Uz -Uy -Ux
0x0023 -Uy +Ux +Uz 0x00D3 -Uy +Uz -Ux
0x002A +Uy -Ux +Uz 0x00DA +Uy -Uz -Ux
0x0041 -Ux +Uy -Uz 0x0111 -Ux +Uz +Uy
0x0048 +Ux -Uy -Uz 0x0118 +Ux -Uz +Uy
0x0062 +Uy +Ux -Uz 0x0124 +Uz +Ux +Uy
0x006B -Uy -Ux -Uz 0x012D -Uz -Ux +Uy
0x0085 -Uz +Uy +Ux 0x0150 +Ux +Uz -Uy
0x008C +Uz -Uy +Ux 0x0159 -Ux -Uz -Uy
0x0092 +Uy +Uz +Ux 0x0165 -Uz +Ux -Uy
0x009B -Uy -Uz +Ux 0x016C +Uz -Ux -Uy

Set Lever Arm (TBD)
The following table shows the payload layout

Table 13: Set Lever Arm payload

Description

Destination Address

reserved

Wheel Distance Value (LSB), mm
Wheel Distance Value (MSB), mm
Lever Arm Bx Value (LSB), mm
Lever Arm Bx Value (MSB), mm
Lever Arm By Value (LSB), mm
Lever Arm By Value (MSB), mm

=}
<

-

(-]

NN N | W —=O

Set Bank of PS Numbers

The following tables provide descriptions of the payload for BankO and Bank1 set commands

Table 14: Set Bank of PS Numbers for Bank0 Payload

Byte | Parameters

Destination Address

Reset Algorithm PS number
Save Configuration PS number
Status Request PS number

Mag Align Command PS number
-7 Reserved

N W=D

6.8. CAN J1939 Messaging 113

OpenlMU Documentation

Table 15: Set Bank of PS Numbers for Bankl Payload

=~
«

-

o

Parameters

Destination Address

Set Packet Rate PS number

Set Packet Type(s) PS number

Set Digital Filer Cutoff Frequencies PS number
Set Orientation PS Number

Set User Behavior PS Number

Set Lever Arm PS Number

Reserved

N N[N R W= O

CAN J1939 Get Request Messages

Contents

* Get Requests

* Responses to Get Requests

Get Requests

Get requests are used by other ECUs in the network to retrieve information from the OpenIMU300RI. All Get requests
are formed as a Request message as specified earlier. The format and content of the Request message has next format:

Extended header:

PF : 234,

PS : 255,
DLC: 3,
Priority: 6,
PGN : 60159.

Table 16: Request Payload

Byte | Description

0 N/A

1 PF of requested parameter
2 PS of requested parameter

In table below provided list of the parameters which can be requested from ECU, including their PF, PS and payload
length of response messages

6.8. CAN J1939 Messaging 114

OpenlMU Documentation

Table 17: List of ECU parameters available for Requests

Parameter

PF PS Payload Length (bytes)

(dec) (dec)

(See note)
Software Version 254 218 5
ECU ID 253 197 8
Packet Rate 255 85 2
Packet Type 255 86 3
Digital Cutoff Frequency | 255 87 3
Orientation 255 88 3
Lever Arm(TBD) 255 95 8
Note:

* Provided PS values for all but the Get Software Version and Get ECU ID can be changed by the “Set Bank of
PS Numbers for Bank1” command. The given values are the default values.

¢ In responses values of PF and PS field in extended headers have the same PF+PS values as requested.

Responses to Get Requests

The following table describe the payloads for responses to Get Requests

Table 18: Software Version Response Payload

Byte | Description

0 Major Version Number
1 Minor Version Number
2 Patch Number

3 Stage Number

4 Build Number

6.8. CAN J1939 Messaging 115

OpenIMU Documentation

Table 19: ECU ID 64 Bit Response Payload

Bits Contents

bits 0 Arbitrary Address
bit 1:3 Industry Group

bit 4:7 Vehicle System Instance
bits 8:14 System Bits

bits 15 Reserved

bits 16:23 Function Bits

bits 24:28 Function Instance
bits 29:31 ECU Bits

bits 32:42 Manufacturer code
bits 43:63 ID bits

Table 20: Packet Rate Response Payload

Byte | Description
0 Source Address
1 Output Data Rate

Table 21: Packet Type Response Payload

Byte | Description

0 Source Address

1 Packet Types Bitmask (LSB)
2 Packet Types Bitmask (MSB)

Table 22: Digital Cutoff Frequency Response Payload

Byte | Description

0 Source Address

1 Acceleration Cutoff
2 Angular Rate Cutoff

Table 23: Orientation Response Payload

Byte | Description

0 Source Address

1 Orientation Value (MSB)
2 Orientation Value (LSB)

6.8. CAN J1939 Messaging

116

OpenlMU Documentation

Table 24: Lever Arm Response Payload (TBD)

Description

Source Address

reserved

Wheel Distance Value (LSB), mm
Wheel Distance Value (MSB), mm
Lever Arm Bx Value (LSB), mm
Lever Arm Bx Value (MSB), mm
Lever Arm By Value (LSB), mm
Lever Arm By Value (MSB), mm

(=]
<

-

(¢

N N[N R W= O

Note:

¢ For Orientation, Cutoff Frequencies Packet Type and Packet Rate responses values of parameters will be the
same as in the set commands for these parameters.

CAN J1939 Data Messages

The following Data messages are implemented in the example applications. The user can modify provided messages
or add messages as needed. The rate of data messages can be configured by SET commands.

6.8. CAN J1939 Messaging 117

OpenIMU Documentation

Table 25: Data Messages

Data Packet PF (d PS (d Data Length | P e
cke (dec) (dec) PGN (dec) eng urpos
(bytes)
240 41 61481 8
Slope Sensor Provide high
Information accuracy
Type 2 pitch & roll
rates
240 42 61482 8
Angular Rate Provide
Sensor Data moderate
accuracy
pitch, roll and
yaw rates
240 45 61485 8
Acceleration Provide
Sensor Data moderate
accuracy
X, Y, and Z axes
acceleration
255 106 65386 8
Magnetometer Provide
Sensor Data readings from
magnetic
sensor for X, Y,
and Z axes

Slope Sensor Information - Type 2 (SSI2) Data Packet

The following table describes the SSI2 Data Packet Payload:

Table 26: SSI2 Data Packet Payload

Bytes | Field Name | Range Resolution Offset
0:2 Pitch -250 to +252 deg | 1/32768 deg/bit | -250 deg
3:5 Roll -250 to +252 deg | 1/32768 deg/bit | -250 deg
6:7 FoM,Latency | Ignore Ignore Ignore

6.8. CAN J1939 Messaging

118

OpenlMU Documentation

Note: SSI2 Data Packet is applicable for VG-AHRS or INS Applications only.

Angular Rate Data Packet

The following table describes the Angular Rate Data Packet:

Table 27: Angular Rate Data Packet Payload

Byte Number | Parameter Range Resolution Offset
0:1 Angular Rate X | -250 to +252 deg/s | 1/128 deg/second/bit | -250 deg
2:3 Angular Rate Y | -250 to +252 deg/s | 1/128 deg/second/bit | -250 deg
4:5 Angular Rate Z | -250 to +252 deg/s | 1/128 deg/second/bit | -250 deg
FoM,Latency | FoM,Latency Ignore Ignore Ignore
Acceleration Data Packet
The following table describes the Acceleration Data Packet:
Table 28: Acceleration Data Packet Payload
Parameter Range Resolution Offset
Byte
Number
0:1 Acceleration X -320 to 320/55 | 0.01 m/s**2/bit -320 m/s**2
m/s**2
2:3 Acceleration Y -320 to 320/55 | 0.01 m/s**2/bit -320 m/s**2
m/s**2
4:5 Acceleration Z -320 to 320/55 | 0.01 m/s**2/bit -320 m/s**2
m/s**2
6:7 FoM,Latency Ignore Ignore Ignore

Magnetometer Data Packet

6.8. CAN J1939 Messaging

119

OpenlMU Documentation

The following table describes the Magnetometer Data Packet:

Table 29: Magnetometer Data Packet Payload

Range Resolution Offset
Byte Parameter
Number
0:1 Magnetic Field X -8 to 8 Gauss 4000 LSB/G -8 Gauss
2:3 Magnetic Field Y -8 to 8 Gauss 4000 LSB/G -8 Gauss
4:5 Magnetic Field Z -8 to 8 Gauss 4000 LSB/G -8 Gauss
6:7 FoM,Latency Ignore Ignore Ignore

Note: As with all multiple byte fields, the LSB of each of the Data Packet fields is transmitted first.

6.8. CAN J1939 Messaging

120

CHAPTER /

Algorithm Simulation System

GNSS-IMU-SIM is an IMU simulation project, which generates reference trajectories, IMU sensor output, GPS out-
put, odometer output and magnetometer output. Users choose/set up the sensor model, define the waypoints and
provide algorithms, and gnss-imu-sim can generated required data for the algorithms, run the algorithms, plot simu-
lation results, save simulations results, and generate a brief summary.

GitHub Link: GNSS-INS-SIM

Use the browser’s back button to return.

121

https://github.com/Aceinna/gnss-ins-sim

CHAPTER 8

Python Serial Driver

Contents

* OpenIMU Python Drivers

* Python Install

8.1 OpenIMU Python Drivers

The OpenIMU Python driver supports communication with the hardware for data logging and device configuration
over the main user UART interface of the OpenIMU hardware. When run in server mode, it allows connection of the
OpenIMU with the developer’s website Aceinna Navigation Studio and its friendly GUI interface.

You can start the OpenIMU server from GitHub Source code

GitHub Link: python-openimu

8.2 Python Install

Please install either Python 2.7 or 3.8 onto your PC & follow Readme file Instructions to Install all dependencies.
 Python Link: Python-Download

* Readme Link: Install-Dependencies

Note: Use the browser’s back button to return to the OpenIMU documentation

122

https://github.com/Aceinna/python-openimu
https://www.python.org/downloads/
https://github.com/Aceinna/python-openimu/blob/master/README.md

Part 11

Products

123

CHAPTER 9

OpenIMU300ZI - EZ Embed Industrial Module

Contents

* Specifications
* Interfaces
* Pinout

e Eval Kit

* Ready to Use Application

The following image shows the OpenIMU300ZI unit.

124

OpenlMU Documentation

The OpenIMU300ZI EZ Embed module integrates highly-reliable MEMS inertial sensors (acceleration, angular
rate/gyro, and magnetic field) in a miniature factory-calibrated package to provide consistent performance through
the extreme operating environments.

OpenIMU300ZI has excellent acceleration and gyro performance that matches systems ten times more expensive. It
is easy to synchronize and interface with external GPS, as well as other sensors.

* Integrated 3-Axis Angular Rate

* Integrated 3-Axis Accelerometer

* Integrated 3-Axis Magnetic Sensor
* 168MHz STM32 M4 CPU

* SPI/ UART Interfaces

* Max ODR 200Hz

* Synchronization Input

¢ In-System Upgrade

e Small Size (24x37x9.5mm)

* Drop-in Upgrade for IMU380ZA, IMU381ZA
* Wide Temp Range -40to 85 ° C
 High Reliability > 50,000hr MTBF

125

OpenlMU Documentation

9.1 Specifications

9.1.1 Environmental, Electrical, and Physical Specifications

ENVIRONMENT
Specifications
Operating Temperature (°C) -40 to 105
Non-Operating Temperature (°C) | -65 to 150
Enclosure
ELECTRICAL
Specifications
Input Voltage (VDC) 30-55
Power Consumption (mW) | <250
Digital Interface SPI or UART
Output Date Rate up to 200Hz (SPI)
up to 100Hz (UART)
Input Clock Sync 1KHz pulse (Configurable)
PHYSICAL
Specifications
Size (mm) 24.15 x 37.70 x 9.50
Weight (gm) <17
Interface Connector | 20-Pin (10x2) 1.0mm pitch header

9.1. Specifications

126

OpenlMU Documentation

9.1.2 OpeniMU300ZI EVK Mechanical Drawing

8 7 4 3 2 1
REVISIONS
REV. DESCRIPTION DATE APPROVED
F
c o l 1 INITIAL RELEASE 06/10/2018 F
coo
oo o o0oo0o
oo
oo
o0
oo o
oo
. o) @ ol 250300 .
°
°
o &)
°
o
cooo
oo 0000 !
b D
- 3.375 ‘
3.75 —4X .23 THRU
c o
) 1.05 B
£
£
=]
; 1]
3 !
o UNLESS OTHERWISE SPECIFIED: 3180 De La Gruz Bivd.
o DIMENSIONS ARE IN INCHES _ e La Cruz Bivd.
S ACEINNA suite 130
£ ANGULLERANCES Santa Clara, CA 95054
PARTS CONFORMING TO THE MATERIAL y N
< AND FINISH SPECIFICATIONS OF THIS UNEAR: XXX & 02
A DOCUMENT ARE RoHS COMPLIANT. XXXX £ 0.01 Eval Kit,
PROPRIETARY AND CONFIDENTIAL NIERPRET TOIERANCNG PER OpenlMU300ZA A
THE INFORMATION CONTAINED IN THIS ANSI Y14.5M-1982
DRAWING IS THE SOLE PROPERTY OF o | e S oW RS, RovEion
MEMSIC INC. ANY REPRODUCTION IN o
PART OR AS A WHOLE WITHOUT WRITIEN | DFAWN | S92 P.D. A 8550-3885-01 1
PERMISSION OF MEMSIC 1S PROHIBIED. crecken sCALE WEIGHT: SHEET1 OF 1
8 7 6 4 3 2 1

Note: Use the browser’s back button to return to this page.

Mechanical Drawing download link

9.1. Specifications

127

OpenlMU Documentation

9.1.3 EVB Schematic

vaus
uy
® _ 2
spl 0 Z|m
VCORE vegava L UART 29
venv Vel 10K 5 £y
veoRE vecavs) o
or) o1UF
SODASSPIMGQE -
GND
ADEUSD 00N
ks LEpy
p
3 RED]
’ @ ’
= R 100 G |
w0 100HM S
v
. DI}{IUSSO
R] Ri2 - s
DNP 2 DN e
oonMponn] VEGV3
= 16
G 5
[Ris
o SWoIo
PGBIOIOGOIMR SWOLK
200mM VREF
LEDs
0 60 @ o
¢ osco c
FT4232H g
7 Fraosnree —
veews PMEG3020ER115
P
e
w ssRx I
n fres 5 u o
FB3 g00ms00mA NOST i3 m
vehy T om— m 7
00R/S00mA v L
96 21anLr
fen fen 13 dos | DEBUG SPI
TFeu T T
T Tior Tottafuur Toror
R o
o M e s M »
MTTBOM MTHSOMH MTEOMI MO0V
yis M M s Mo
@ @ l: l Tide Open IMU Evaluation Board
MTHIZZMIL MTHIZMIL MTHISTMIL MTHIZMIL MTHISZMIL S A3 No 000.03 Revision: A
Dutci 6222018 Time: 329:16 AT Sheet 1 of 1
File
. N s . s . ’ s

Schematic download

9.2 Interfaces

9.2.1 SPl and UART

Contents

e Ports

* SPI & UART Messaging

Ports

The OpenIMU300ZI can be configured in a number of ways for communication with external world. There are up to
three external UART ports and one external SPI port.

Typical configurations include:

9.2. Interfaces 128

OpenlMU Documentation

ART M
3U ode « User UART
¢ GPS/External Sensor UART
* Debug UART
ART + SPIM
v +S ode e User SPI Port
¢ GPS/Debug UART

SPI & UART Messaging

To learn more about the OpenIMU SPI & UART Messaging Framework, please see the following pages:
1. SPI Messaging Framework

2. UART Messsaging Framework

9.3 Pinout

9.3.1 Connector Pinout - Including GPS Sensor Interface

The OpenIMU300ZI main connector is a SAMTEC FTM-110-02-F-DV-P defined below. The mating connector that
pairs with the main connector is the SAMTEC CLM-110-02.

REF
PIN 1
| —PIN 2
o |
= BE =
— B8 =
= BE =
= BE =
= BE =
:' gg = | pinig
~—REF
PIN 20

OpenIMU300ZI Interface Connector

J2 is 20-pin connector and it used for connecting the OpenIMU300ZI unit into Open IMU evaluation board. The
connector pin definitions are defined in the table below. The GPS-related signals are noted.

Interface Connector Pin Definitions

9.3. Pinout 129

https://openimu.readthedocs.io/en/latest/software/SPImessaging.html
https://openimu.readthedocs.io/en/latest/software/UARTmessaging.html

OpenIMU Documentation

Pin Main Function Alternative Function
1 GPIO (103) Output by default
2 GPS 1PPS Input
Synchronization Input
3
User UART TX (Output) SPI Clock (SCLK)
(Serial Channel 0) Input
4
User UART RX (Input) SPI Data (MISO)
(Serial Channel 0) Output
5
UART1 TX (Output) SPI Data (MOSI)
(Serial Channel 1) Input
6
UART1 RX (Input) SPI Chip Select (SS)
(Serial Channel 1) Input
7
SPI/UART Interface Data Ready (SPI)
Selector Active edge falling
8 External Reset (NRST))
9 GPIO (102)
Output by default
10 Power VIN (3-5 VDC) Power VIN (3-5 VDC)
11 Power VIN (3-5 VDC) Power VIN (3-5 VDC)
12 Power VIN (3-5 VDC) Power VIN (3-5 VDC)
13 Power GND Power GND
14 Power GND Power GND
15 Power GND Power GND
16 SWDIO (SWD debug interface)
17
UART2 TX Debug interface
(Serial Channel 2) GPS
18 SWCLK (SWD debug interface)
19
UART2 RX Debug Interface
(Serial Channel 2) GPS
20 Reference voltage for SWD debug interface
9.3. Pinout 130

OpenlMU Documentation

Power Input and Power Input Ground

Power is applied to the OpenIMU300ZI on pins 10 through 15. Pins 13-15 are ground; Pins 10-12 accepts 3to S VDC
unregulated input. Note that these are redundant power ground input pairs.

Note: Do not reverse the power leads or damage may occur. Do not add greater than 5.5 volts on the power pins or
damage may occur. This system has no reverse voltage or over-voltage protection.

Note: Serial channel functions can be arbitrary assigned in the FW. Default assignments are:

Serial channel 0 -> USER UART (dedicated for user messages).
Serial channel 1 -> GPS UART (dedicated for connecting external GPS).
Serial channel 2 -> DEBUG UART (dedicated for debug messages and CLI interface).

In some application examples (INS, VG_AHRS) in file main.c performed reassignment of serial channels to different
functions.

Note: Pin 7 needs to be grounded (LOW) upon unit startup to force unit into UART interface mode. To force unit
into SPI mode this pin needs to be either unconnected or connected to the input or external device (can be externally
pulled UP via 10K resistor).

In SPI mode only serial channel 2 available and can be used for communication with GPS or as DEBUG channel.

9.3.2 ARM Cortex CPU

The OpenIMU300ZI uses ST’s powerful Cortex M4 series of Microcontrollers.
* FPU

e DSP instructions

1MByte Flash
192KB SRAM
* 168 MHz

* Rich Set of peripherals
Learn more about OpenIMU300ZI’s CPU at http://www.st.com/en/microcontrollers/stm32f405rg.html.

9.4 Eval Kit

9.4.1 OpeniMU300ZI Eval Kit

The OpenIMU300ZI evaluation kit consists of a robust and easy-to-use eval board, a test fixture, the OpenIMU300ZI
IMU module, and an ST-LINK J-TAG pod.

9.4. Eval Kit 131

http://www.st.com/en/microcontrollers/stm32f405rg.html

OpenlMU Documentation

.
" | 3P

s

AN
LT TR

OpeniMU300

i :

©ST-Link/v2
Debugging and programming
STM8 and STM32 microcontrollers

Overview
1. Introduction

The OpenIMU evaluation kit is a hardware platform to evaluate the OpenIMU300ZI inertial navigation
system and develop various applications based on this platform. Supported by the Aceinna Navigation
Studio the kit provides easy access to the features OpenIMU300ZI and explains how to integrate the
device in a custom design. The OpenIMU evaluation kit include OpenIMU300ZI, evaluation board with
various interface connectors and test adapter for mounting OpenIMU300ZI unit.

9.4. Eval Kit 132

OpenlMU Documentation

2. Components
* OpenIMU Evaluation board, which includes:
— Virtual COM-port USB interface, providing connectivity to OpenIMU300ZI unit from PC
— Connector for programming and debugging target via Serial Wire Debug (SWD) interface
— Connector for interfacing OpenIMU300ZI from custom-designed system.
— Test terminals for connecting oscilloscope or logic analyzers to the dedicated OpenIMU300ZI signals.
* OpenIMU300ZI unit. Please note, that it installed on the bottom side of evaluation board.
* Test fixture adapter for convenient aligned mounting of OpenIMU evaluation board and OpenIMU300ZI unit
» ST-Link debugger for in-system development of application code
2.1 OpenIMU300ZI unit

OpenIMU300ZI is 9 DOF (degrees of freedom) fully calibrated inertial unit. It is used as the base for
development custom inertial navigation applications.

2.2 OpenIMU Evaluation board

OpenIMU Evaluation board designed to provide convenient way for communicating with OpenIMU300ZI
unit from PC, to expose serial and SPI interfaces to developer and to debug applications using ST-Link
debugger vis SWD interface.

2.3 OpenIMU test adapter

OpenIMU test adapter used to firmly secure OpenIMU300ZI unit and Open IMU evaluation board in
precisely aligned position.

9.4. Eval Kit 133

OpenIMU Documentation

2.4 ST-Link debugger

St-Link debugger is standard debugger provided by STMicroelectronics company. It used for in-system

debugging of applications via SWD interface.

3. Open IMU evaluation board Headers and Connectors

3.1 Connector for plugging in OpenIMU300ZI unit (J2).

J2 is 20-pin connector and it used for connecting the OpenIMU300ZI unit into Open IMU evaluation
board. The pin functions are described in the table on the “OpenIMU Modules » OpenIMU300ZI - EZ
Embed Automotive Module » Connector Pinout - Including GPS Sensor Interface” page accessible from
the Contents bar on the left.

3.2 Extension Header (P4)

OpenIMU evaluation board has 12-pin extension header. It designed to expose IMU interface signals to

external system. The extension header pin functions described in table below

Pin Main Function Alternative Function
1 Power GND Power GND
2 Power GND Power GND
3
Serial Channel 1 RX SPI Chip Select (SS)
(Input) (Input)
4
IMU Data Ready GPIO
(SPI interface Mode) (UART interface mode)
5
User UART TX SPI Clock (SCK)
(Serial Channel 0) (Output)
(Output)
6 1PPS Input from GPS
Synchronization Input
7
Serial Channel 1 TX SPI Data (MOSI))
(Output) (Input)
8 External Reset (NRST))
9
User UART RX SPI Data (MISO)
(Serial Channel 0 (Output)
(Input)
10 GPIO Output (102) GPIO Input
11 Power VIN 5 VDC Power VIN 5 VDC
12 GPIO Output (I03) GPIO Input

9.4. Eval Kit

134

OpenlMU Documentation

3.4 IMU interface type selection header (P1).
Pins 1-2 define IMU Interface Mode:

If there is no connection between pins 1 and 2 (jumper is OFF) - SPI mode.
if there is connection between pins 1 and 2 (jumper is ON) - UART mode (default).

In SPI mode:

Jumpers between pins 3-4 and 5-6 need to be taken OFF to prevent interference between
SPI bus signals (SS and MISO) and serial interface signals from FTDI chip.

IMU SPI interface signals (MISO, MOSI, SS, SCK, DRDY) routed to header P4.

Note: On SPI interface IMU acts as a SLAVE device.

Note: Not all provided application examples support SPI interface mode. Please refer to specific example for details.

In UART mode:

Jumper between pins 3-4 should be “ON”’ (default) if IMU Serial Channel 0 (USER main
channel) needs to be routed to PC via USB connection (on first in the row enumerated USB
virtual COM port. See p.6).

Jumper between pins 3-4 should be OFF if IMU Serial Channel 0 needs to be accessed from
P2 connector.

Jumper between pins 5-6 should be ON (default) if IMU Serial Channel 1 needs to be routed
to PC via USB connection (on second in the row enumerated USB virtual COM port. See p.6).

Jumper between pins 5-6 should be OFF if IMU Serial channel 1 needs to be accessed from
P2 connector. For example if Serial Channel 1 used for connection with some external device
(GPS or other)

3.5 IMU Serial Channel 2 mode selection header (P2).

Jumpers between pins 1-2 and 3-4 should be ON if IMU Serial Channel 2 needs to be routed
to PC via USB connection, for example in case of using IMU Serial Channel 2 for streaming
out debug information to PC or as CLI interface (on third in the row enumerated USB virtual
COM port. See p.6).

9.4. Eval Kit 135

OpenlMU Documentation

Jumpers between pins 1-2 and 3-4 should be OFF if IMU Serial Channel 2 needs to be
routed to some external device (for example GPS). In this case pin 2 is RX (to IMU) and pin
4 is TX (from IMU).

3.6 SWD (JTAG) connector (P3).

20-pin connector P3 used for connecting ST-Link or J-Link debuggers to the IMU for in-system debugging
of applications via SWD interface. It has standard pin-out.

Pin Main Function

1,2 Vref
4,6,8,10,12, 14,16, 18,20 | GND

7 SWDIO

9 SWCLK

15 nRST

19 3.3V from debugger

3.7 USB connector (J3)

USB connector used for powering up the IMU and evaluation board. Also its used to providing connec-
tivity from PC to IMU via virtual serial ports. Up to 3 exposed IMU serial interfaces can be routed to
PC.

4. OpenIMU evaluation board LED indicators
Evaluation board has few LED indicators for visual monitoring of data traffic on serial ports:
LED?2 indicator reflects activity on RX line of IMU main (user) serial interface (traffic to IMU)
LED1 indicator reflects activity on TX line of IMU main (user) serial interface (traffic from IMU)
LED3 indicator while lit indicates presence of the power (in case switch SW1 is “ON”)
LED4 indicator reflects activity on GPIO3 (lit if high)
LEDS indicator reflects activity on GPIO2 (lit if high)

5. Open IMU evaluation board power

Power to OpenIMU evaluation board provided by USB. To power system up - connect USB cable to
connector J1 and turn “ON” switch SW1.

6. Communication with IMU from PC

The OpenIMU evaluation board has an FTDI chip FT4232 installed. This chip provides 4 virtual serial
ports. When evaluation board set up to force IMU interface in UART mode (see p.3.4) up to 3 serial
ports on IMU can communicate with PC. When evaluation board connected to PC and power switch
turned “ON” in Device Manager board will appear as 4 new consecutive virtual COM ports.

First in a row virtual port is routed to IMU’s main UART channel (Serial channel 0) (pins 3
and 4 on J2), and usually dedicated for sending commands to IMU and capturing responses
and periodic messages from IMU. It usually used by python driver to establish
communication between IMU and Aceinna Navigation Studio.

Second in a row virtual port routed to IMU’s Serial Channel 1 (pins 5 and 6 on J2) and

potentially can be used for modeling or cloud data processing - sending GPS messages from
PC to IMU and back.

9.4. Eval Kit 136

OpenlMU Documentation

Third in a row virtual port routed to IMU’s Serial channel 2 (pins 17 and 19 on J2) and
usually used as a debug/CLI serial channel .

9.4.2 OpenlMU300ZI Evaluation Kit Setup

To set up OpenIMU300ZI evaluation kit for development you’ll need to perform next steps:

1. Unpack OpenIMU300ZI evaluation kit.
2. Push power switch to “OFF” position.

3. Connect OpenIMU300ZI evaluation board to the PC via USB cable. USB connection provides power to the test
setup as well as connectivity between PC and IMU serial ports.

4. Connect ST-Link debugger to the PC via USB cable.
5. Connect OpenIMU300ZI evaluation board to ST-Link debugger using provided 20-pin flat cable.
6. Push power switch to “ON” position.
Now you are ready to debug and test your application.
» The following activities are addressed in the “Tools/Development Tools” section:
— Download App with JTAG
— Debugging with PlatformIO Debugger and JTAG Debug Adapter
— Graphing & Logging IMU Data using the Acienna Navigation Studio
OpenIMU Evaluation Kit Important Notice

This evaluation kit is intended for use for FURTHER ENGINEERING, DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is not a finished product and may not
— (yet)

comply with some or any technical or legal requirements that are applicable to,
—finished products,

including, without limitation, directives regarding electromagnetic compatibility,
—recycling (WEEE),

FCC, CE or UL (except as may be otherwise noted on the board/kit). Aceinna supplied,
—this board/kit

"AS IS," without any warranties, with all faults, at the buyer's and further users'
—sole risk. The

user assumes all responsibility and liability for proper and safe handling of the,
—goods. Further,

the user indemnifies Aceinna from all claims arising from the handling or use of the
—goods. Due to

the open construction of the product, it is the user's responsibility to take any and_
—~all appropriate

precautions with regard to electrostatic discharge and any other technical or legal
—concerns.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR ACEINNA
SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES.

No license is granted under any patent right or other intellectual property right of
—Aceinna covering

or relating to any machine, process, or combination in which such Aceinna products or_
—services might

be or are used.

9.4. Eval Kit 137

OpenlMU Documentation

9.4.3 OpenIiMU300ZI Eval Board & Coordinate Frame

OpenlMU300ZI Eval Board and Fixture

The OpenIMU300ZI Eval Board is attached to a fixture for easy handling and isolation of the back side of the board
from any contact. The EVB interfaces to the main connector of the OpenIMU300EZ as well as the OpenIMU330
evaluation module. The EVB and IMU module are mounted together to a precision fixture to assist in testing. The
OpenIMU300EVB uses an FTDI 4-port Serial-to-USB converter to allow you to communicate with between the Open-
IMU serial ports and a laptop computer. There are also jumper connections to use to connect to the device’s primary
SPI port. Use the JTAG interface to directly download compiled code to the device quickly.

OpenlMU300ZI Eval Module Default Coordinate System

The OpenIMU default coordinate systems is shown below. In the reference IMU apps, a configuration setting is
provided to control the coordinate system. These configurable elements are known as Configuration Parameters.

+X (Ux)
N +Y (Uy)
‘L
=™ Roll
V) A
C 5> Pitch
Yaw

+2Z (Uz)

9.5 Ready to Use Application

To learn about Ready-to-Use-Apps information & available for immediate download to your OpenIMU, please see the
following pages:

1. Ready-to-Use-Applications Information
2. Need to run the OpenIMU server before running one of the ready to use applications

3. Then upload a prebuilt app to your OpenIMU

9.5. Ready to Use Application 138

https://openimu.readthedocs.io/en/latest/apps.html
https://developers.aceinna.com/devices/connect
https://developers.aceinna.com/code/apps

cHAaPTER 10

OpenIMUBO0O0RI - Rugged Industrial CAN Module

Contents

* Specifications
* Interfaces
* Pinout

e Eval Kit

* Ready to Use Application

The following image shows the OpenIMU300RI unit.

139

OpenlMU Documentation

The following diagram shows the default coordinate frame for the OpenIMU300RI. The coordinate frame can be
changed using a UART or CAN message.

The OpenIMU300RI Robust Industrial CAN module integrates highly-reliable MEMS inertial sensors (acceleration,
angular rate/gyro, and magnetic field) in a miniature factory-calibrated package to provide consistent performance
through the extreme operating environments.

OpenIMU300RI has excellent acceleration and gyro performance that matches systems ten times more expensive.
* Hardware

Precision 3-axis MEMS Accelerometer

Low-Drift 3-axis MEMS angular rate sensor

High Performance 3-axis AMR Magnetometer
168 MHz ARM M4 microcontroller

Wide Temp Range, -40C to +85C

Wide Supply Voltage Range, 5 V-32V

High Reliability, MTBF > 50k hours

IP67 Ampseal Connector
CAN 2.0 interface

UART - conditionally, one of the following:
% Debug Console interface

* -or- Aceinna Navigation Studio interface

SPI and I2C buses for communicating with internal sensor peripherals

140

OpenlMU Documentation

+X Axis

+Y Axis

Pitch

+7Z Axis goes out the bottom
of the unit

Fig. 1: OpenIMU300RI Default Coordinate Frame

14

OpenlMU Documentation

% SPI - Angular Rate sensor
* [2C - Accelerometer and Magnetometer (if present)
* Firmware and Firmware Support
— In-System Firmware Upgrade
— Open Source Tool Chain
— Open Source Algorithms (VG / AHRS / INS)
— Built in 16-State Open Source Extended State Kalman Filter

— Open Community & Support

10.1 Specifications

10.1.1 Electrical, and Physical Specifications

OS2 i J'.-ﬁ'!!m*

Performance Spec|f|cat|on‘ Electrical Specifications
Ta =25°C, VDC = 12V, unless otherwise stated Characteristic Specification
Angular Rate MIN TYP? MAX pe
. Input voltage 49-32V
Range (°/s) -400 +400
: e Qver voltage 36V
Bias Instability (°/hr)’ 6
- = = Reverse voltage -36 V
Bias Stability over Temp (°/s) 0.3 o oA
Scale Factor Accuracy (%) 0.03 e 200 mW
Cross-Axis Error (%FSR) 0.02 :ower 7 - = = n': 3
Angle Random Walk (°/vhr)' 03 Seset resPonse utomatic a2 ervo tdage ropout
Configurable Bandwidth (Hz) 5 50 I\:art-gpttlr:; rear & 1?;3” %
Acceleration MIN TYP? MAX b Ll i &
Range (g) 8 +8 CAN Baud rate 250k - 1M
o G 10 RS232 Baud Rate 38400 - 230400
Bias Stability over Temp (mg) 3
Scale Factor Accuracy (%FSR) 0.03 Physical Specifications
Non-Linearity (%FSR) 0.03 Characteristic Specification
VRW (m/s/vhr)! 0.06 Dimensions 65 x 66 x 27 mm
Configurable Bandwidth (Hz)) 50 Weight <759
Magnetic Field MIN TYP? Interface Connector Ampseal 16 — 6 Position IP67
MAX Mating Connector TE Connectivity 776531-1
Range (mGauss) -8000 +8000
Resolution (mGauss) 0.3 3 R
Noise (mGauss/vHz) 0.25 Environmental Specifications
Bandwidth (Hz) 5 Characteristic Specification
Note 1: Allan variance curve, constant temperature Operating Temperature -40 -85°C
— o
Note 2: Typical values are 1-sigma values unless otherwise noted ;t::::: ;rl:)rtll:::ir:;ure ;327, I?:’SG ch

10.1.2 OpenIMU300RI Mechanical Diagram and Mounting Specifications

The following diagram shows the mechanical drawings for the OpenIMU300RI. The mechanical dimensions are in
mm.

Note: Mounting Specifications

10.1. Specifications 142

OpenlMU Documentation

* Use 4 - M5 Alloy Steel Socket Head Screws to secure the OpenIMU300RI
 Torque the screws to 2.37 N-m (21 inch-pounds)
* It is recommended to use thread lock.

e If a washer and lock washer are used, the washer outer diameter must not be larger than the outer diameter of
the bushing. A washer diameter of 10 mm is recommended if a washer is used.

10.2 Interfaces

10.2.1 CAN and UART

Contents

e Ports

* CAN Messaging

e UART Messaging

Ports

The OpenIMU300RI has two ex-
ternal ports; one UART port
and one CAN bus port. Based
on these available external ports,
the OpenIMU300RI can be con-
figured in several modes for
communication with the external
world.

The usage modes are:

UART Mod
ode * Typically used during early development

 Single UART for all messages, debug output, and
firmware update

CAN + UART Mod
ode * Typically used during late development

* Uses CAN Port for messages and firmware update
* Single UART for all messages, debug output, and
firmware update

CAN Mod
ode * Typically used for production

* Uses CAN Port for messages and firmware update

10.2. Interfaces 143

OpenlMU Documentation

CAN Messaging

1. CAN J1939 Messaging & Example Application

UART Messaging

1. UART Messsaging Framework

Fig. 3: OpenIMU300RI Connector

To learn about CAN J1939 Mes-
saging & Example Application
For OpenIMU330RI, please see
the following page:

To learn more about the Open-
IMU UART Messaging Frame-
work, please see the following

pages:

10.3 Pinout

10.3.1 OpenliMU300RI
Connector Pinout

The OpenIMU300RI mating con-
nector is the TE Connectivity
776531-1 (Ampseal-16 Housing
“AS 16, 6P PLUG ASSY, RD,
KEY 1) or equivalent.

The pinout for that connector is
shown in the following diagram.
Pin 1 is in the upper right corner
of the diagram.

The connector pin definitions are
defined in the table below.

10.3. Pinout

144

https://openimu.readthedocs.io/en/latest/software/CAN/CAN_J1939_Application.html
https://openimu.readthedocs.io/en/latest/software/UARTmessaging.html

OpenlMU Documentation

Fig. 4: OpenIMU300RI Connector Pinout

Pin Signal
I CANH
2 CANL
3 Ground
4 RS232 RX
5 RS232 TX
6 Power

Fig. 5: OpenIMU300RI Connector Pinout

10.3. Pinout 145

OpenlMU Documentation

Note: Power is applied to the OpenIMU300RI on pin 6. Pin 3 is ground. The OpenIMU300RI accepts an unregulated
4.9 to 32 VDC input. It is reverse polarity and ESD protected internally

10.3.2 ARM Cortex-M4
CPU

The OpenIMU300RI uses one of
the powerful ST-Micro Cortex-
M4 Microcontroller.

* FPU

* DSP instructions

* 1MByte Flash

* 192KB SRAM

* 168 MHz Clock

* Rich set of peripherals

Learn more about the SoC used
in the OpenIMU300RI at http://
www.st.com/en/microcontrollers/
stm32f405rg.html.

10.4 Eval Kit

10.4.1 OpenliMU300RI
Eval Kit

The OpenIMU300RI evaluation
kit includes:

* A robust and easy-to-use test fix-
ture.

* An OpenIMU300RI IMU module
attached to the test fixture with
JTAG (SWD) 20-pin connector.

e An ST-LINK J-TAG debugger, a
debugger cable, and a USB cable.

* A multiple-connector cable for
RS232/CAN/Power connection.

10.4. Eval Kit 146

http://www.st.com/en/microcontrollers/stm32f405rg.html
http://www.st.com/en/microcontrollers/stm32f405rg.html
http://www.st.com/en/microcontrollers/stm32f405rg.html

OpenlMU Documentation

(

o ST-Link/v2
Debugging cnd programming
STM8 and STM32 microcontrollers

OpenIMU300RI Evaluation
Kit Introduction

The OpenIMU evaluation kit is a
hardware platform used to eval-
uate the OpenIMU300RI inertial
navigation system and develop
various applications based on this
platform. It is supported by
the Aceinna Navigation Studio,
which provides easy access to the
features of the OpenIMU300RI
and explains how to integrate the
device in a custom design. The
Components section below pro-
vides the contents of the kit.

Note: An external DC power supply is required. The power supply must be able to provide 400mA at 4.9VDC to

32VDC.

The cable shown in the Evalua-
tion Kit figure may look different
than the cable that will be pro-
vided with the Evaluation Kit

10.4. Eval Kit

147

OpenlMU Documentation

OpenIMU300RI Evaluation Unit
installed on test fixture with JTAG connector

OpenIMU300RI Evaluation Kit

OpenIMU300RI Evaluation
Kit components

OpenIMU300RI unit

OpenIMU300RI is 9 DOF (de-
grees of freedom) fully calibrated
inertial unit. It is used as the base
for development custom inertial
navigation applications.

OpenIMU300RI Evaluation
Kit fixture and JTAG header
board

The OpenIMU300RI unit with
JTAG header board are mounted
on the text fixture. The JTAG

10.4. Eval Kit

148

OpenlMU Documentation

header provides means to de-
bug/upload applications on eval-
uation unit.

ST-Link debugger

The ST-Link debugger is a
standard JTAG SWD debugger
provided by STMicroelectronics
company. It is used for in-
system debugging/uploading of
applications via SWD interface.

OpenIMU300RI Breakout Ca-
ble

An included cable provides
means of connecting unit to PC
via RS232 interface, connect-
ing unit to the CAN bus and
powering up unit.

Next table provides connectors
pin assignments in supplied cable

Signal Name
Unit RS232
Connector Connec
GND 3 5
VIN 6
RS232 TX 5 2
RS232 RX 4 3
CANH 1
CANL 2

10.4.2 OpenliMU300RI
Evaluation Kit Setup

To set up OpenIMU300RI eval-
uation kit you’ll need to per-
form next steps:

. Install PC tools.
. Unpack OpenIMU300RI evalua-

tion kit.

. Connect provided cable to Open-

IMU300RI evaluation unit (see
notes below).

. Connect cable connector marked

“RS232” to the PC serial port or
to UCB-to-Serial adapter.

10.4. Eval Kit

149

OpenlMU Documentation

. Connect cable connector marked

“CAN” to the CAN bus or to the
CAN traffic monitoring unit (like
Vestor or Komodo or other).

. Connect ST-Link debugger to the

PC via USB cable. Make sure
that ST-Link device appeared in
“Device Manager”.

. Connect 20-pin connector on

OpenIMU300RI evaluation unit
to ST-Link debugger using pro-
vided 20-pin flat cable.

. Connect RED (+) and BLACK

(GND) wires to external power
supply (5 - 32V, 0.1A)

. Turn ON power supply.

Now you are ready to debug and
test your application.

The following activi-
ties are addressed in the
“Tools/Development Tools”
section:

Download App with JTAG

Debugging with PlatformIO De-
bugger and JTAG Debug Adapter

Graphing & Logging IMU Data
using the Acienna Navigation
Studio

Note: The RS232/CAN/Power cable shown in the image is similar to the cable that will be supplied with the kit. It is

for information only.

Note: The following directions are applicable for connecting cable to OpenIMU300RI evaluation unit:

* Align the keys on the unit and the

cable connector.

Push the 6-pin cable connector
into the unit connector until lock
clicks.

If an extra lock required - push
the red latch under the black
latch. This prevents the disen-
gagement button from being de-
pressed.

10.4. Eval Kit

150

OpenlMU Documentation

Note: The following directions are applicable for disconnecting cable from OpenIMU300RI evaluation unit:

» If engaged, pull the red latch

away from the connector toward
the cable.

Push down on the black disen-
gagement button in the middle of
the connector.

Pull the cable connector away
from the unit.

Next table provide connectors pin
assignments in provided cable

Signal Name

Unit
Connector

RS232
Connector

CAN
Connector

Power
Wires

GND

Black

VIN

Red

RS232 TX

RS232 RX

CANH

CANL

N =] | OV W

OpenIMU300RI Connector

OpenIMU Evaluation Kit Im-
portant Notice

This evaluation kit is_|
—intended for use for
—FURTHER ENGINEERING,

— DEVELOPMENT,
DEMONSTRATION, OR_,
—~EVALUATION PURPOSES,
—ONLY. It is not_

—a finished product,
—and may not (yet)
comply with

—some or any technical |
—or legal requirements,
—that are applicable
—to finished products,
including,

— without limitation,

< directives regarding,
—electromagnetic,,
—compatibility,

— recycling (WEEE),
FCC, CE_

—or UL (except as may,
—be otherwise noted

—.on the bEINIPPESqn)next page)

< Aceinna supplied

10.4. Eval Kit

—~this board/kit
151

OpenlMU Documentation

(continued from previous page)

"AS IS," without,

—any warranties, with_
—all faults, at the
—buyer's and further
—users' sole risk. The
user assumes all
—responsibility and_
—~liability for proper
—~and safe handling
—~o0f the goods. Further,
the user indemnifies,
—Aceinna from all
—claims arising from
—the handling or use
—~of the goods. Due to
the open,,

—construction of the
—product, it is the
—user's responsibility,,
—~to take any,,

—and all appropriate
precautions with regard
—to electrostatic,,
—discharge and_

—any other technical_
—or legal concerns.

(continues on next page)

10.4. Eval Kit

152

OpenlMU Documentation

(continued from previous page)

EXCEPT TO THE EXTENT
—OF THE INDEMNITY SET_,
—FORTH ABOVE, NEITHER,,
—USER NOR ACEINNA
SHALL BE LIABLE

—TO EACH OTHER FOR_,
—ANY INDIRECT, SPECIAL,
— INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.
No license,,

—is granted under,
—any patent right

—or other intellectual,
—property right,,

—~of Aceinna covering
or relating to any,,
—machine, process, or_
—combination in which
—such Aceinna products,,
—or services might

be or are used.

10.4.3 OpenIiMU300RI
Eval Kit Fixture and
Board

Note: The Power/CAN/RS232 cable shown is not the cable that will be provided in the kit. It is similar and is

provided temporarily until an image of the actual cable is available.

The OpenIMU300RI module
and the JTAG header board
are mounted together on a
precision fixture to assist in
testing. The OpenIMU300RI
Eval Kit provides interfaces
to the main connector of the
OpenIMU300RI and to the JTAG
header board. The JTAG header,
the OpenIMU300RI 9-pin D-sub
connector, and the CAN 9-pin D-
sub connector provide the means
to connect the OpenIMU300RI
Eval Kit to a PC.

OpenIMU300RI Default Coor-
dinate System

The OpenIMU default coordinate
systems is shown below. In the
reference IMU apps, a configu-
ration setting is provided to con-
trol the coordinate system. These

10.4. Eval Kit

153

OpenlMU Documentation

Fig. 6: OpenIMU300RI Eval Kit Fixture and Board

10.4. Eval Kit 154

OpenlMU Documentation

configurable elements are known
as Configuration Parameters.

Pitch

+7 Axis goes ol
of the unit

10.5 Ready to Use
Application

To learn about Ready-to-Use-
Apps information & available
for immediate download to your
OpenIMU, please see the follow-

ing pages:
1. Ready-to-Use-Applications Information

2. Need to run the OpenIMU server before running one of the ready to use applications

3. Then upload a prebuilt app to your OpenIMU

10.5. Ready to Use Application 155

https://openimu.readthedocs.io/en/latest/apps.html
https://developers.aceinna.com/devices/connect
https://developers.aceinna.com/code/apps

cHAPTER 11

OpenIMUB30BI - Triple Redundant, 1.5 ¥Hr, SMT Module

Contents

* Specifications
* SMT Process
* Interfaces

* Pinout

* Eval Kit

» Firmware Update

* Ready to Use Application

The following image shows the OpenIMU330BI unit.

156

OpenlMU Documentation

NCE

S

OpenlMU330BI
P/N 8350-1800-01 |

‘IIII|IIII‘IIII|IIII“5Im
0 1 2

The OpenIMU330BI module integrates highly-reliable MEMS inertial sensors (acceleration, angular rate/gyro) in a
miniature factory-calibrated package to provide consistent performance through the extreme operating environments.

It is easy to synchronize and interface with external GPS, as well as other sensors. The main feature of OpenIMU300BI
is tripple redundancy for each inertial sensor.

Integrated tripple redundant 3-Axis Angular Rate Sensors
Integrated tripple redundant 3-Axis Accelerometer
80MHz STM32 M4 CPU with FPU

SPI / UART Interfaces

Sensors highest ODR is 200Hz

Synchronization Input

In-System Upgrade

Ultra Small Size: 11x15x3 mm

Wide Temp Range -40 to 85 ° C

High Reliability > 50,000hr MTBF

Low power

157

OpenlMU Documentation

11.1 Specifications

11.1.1 OpenIMU330BI Environmental, Electrical, and Physical Specifications

ENVIRONMENT
Specifications
Operating Temperature (°C) -40 to 85
Non-Operating Temperature (°C) | -40 to 85
Enclosure
ELECTRICAL
Specifications
Input Voltage (VDC) 30-55
Power Consumption (mW) | <250
Digital Interface SPI or UART
Output Date Rate up to 200Hz (SPI)
up to 200Hz (UART)
Input Clock Sync 1KHz pulse (Configurable)
ABSOLUTE MAXIMUM RATINGS
Specifications
Input Voltage (VDD) 30t05.5V
Digital Input Voltage to GND -03t03.6V
Digital Output Voltage to GND -03t03.6 V
Calibration Temperature Range -40to 85 C
Operating Temperature Range -40t0 85 C
Non-Operating Temperature Range | -40to 85 C

PHYSICAL
Specifications
Size (mm) 11x15x3
Weight (gm) 1.0
Inteface Connector | 44 ball, BGA

VOLTAGE VALUES

Specifications

Nominal voltage 33V
All Pins Voltage 5V
Reset Pin Max Voltage | 3.6 V

VALUES
* Moisture Sensitivity Level (MSL) =3
¢ The mechanical shock = 500 m/s2

11.1. Specifications 158

OpenlMU Documentation

COMPLIANCE
* OpenIMU330BI is RoHS and Reach Compliant.
* RoHS Compliant download
¢ Reach Compliant download

INPUT VOLTAGE TOLERANCE

No MCU Pin Name Type Description
Input Voltage
Tolerance
Al GND P Ground
A2 GND P Ground
A3 GND P Ground
A4 GND P Ground
A5 GND P Ground
A6 GND P Ground
A7 GND P Ground
A8 GND P Ground
B3 GND P Ground
B4 GND P Ground
B5 GND P Ground
B6 PB11 DEBUG-RX 1 5V
Receive debug
data
from user to
IMU
C2 PB10 DEBUG-TX O 5V
Transmit debug
data
from IMU to
user
C3 DNC Not Used
Co6 GND P Ground
Cc7 VDD P
DC3.3V
typical,input
voltage range
DC3.0V - 5.5V
D3 GND P Ground

Continued on next page

11.1. Specifications

159

OpenlMU Documentation

Table 1 — continued from previous page

typical,input
voltage range
DC3.0V -5.5V

D6 VDD P
DC3.3V
typical,input
voltage range
DC3.0V-5.5V
E2 GND P Ground
E3 VDD P
DC3.3V
typical,input
voltage range
DC3.0V - 5.5V
E6 GND P Ground
E7 PA1l GPIOI1 1/0 GPIO 5V
F1 PA9 USER_UART_TX O 5V
Transmit IMU
data
to user
F3 NRST RST 1 Reset Signal In- | 3.6V
put
Fo6 GND P Ground
F8 GND P Ground
G2 GND P Ground
G3 PB12 CS I 5V
SPI interface
slave
mode, CS signal
G6 PB15 DIN I 5V
SPI interface
slave
mode, MOSI
signal
G7 PA10 USER_UART_RX 1 5V
Receive
commands from
user to IMU
Hi1 VDD P
DC3.3V

Continued on next page

11.1. Specifications

160

OpenlMU Documentation

Table 1 — continued from previous page

H3

PB14

DOUT

(0]

SPI interface
slave

mode, MISO
signal

5V

H6

PB13

SCLK

SPI interface
slave

mode, Clock
signal

5V

HS8

GND

Ground

12

PA13

SWDIO

/0

Data IO of SWD

5V

J3

PB3

PPS/SYNC

Sync signal
from external
device or 1PPS
signal

from GNSS
module

5V

4

VDD

DC3.3V
typical,input
voltage range
DC3.0V -5.5V

J5

VDD

DC3.3V
typical,input
voltage range
DC3.0V -5.5V

J6

PB5

DR

Data ready sig-
nal

5V

J7

GND

Ground

Kl

PH3

BOOTO

IMU boot mode
control

5V

K3

PA14

SWCLK

Clock signal of
SWD

5V

K6

VDD

DC3.3V
typical,input
voltage range
DC3.0V -5.5V

K8

PA12

GPIO2

/0

GPIO

5V

OpenIMU330BI Pin Voltage Tolerance doc download

11.1. Specifications

161

OpenlMU Documentation

11.1.2 OpenliMU330BI EVB Schematic

' : . s
wiso
scx
xi w
A ToonM [ooin 3
vegwva LEDI LED:
2 Vaus
GReEN [veLLow
y
w] ®s
VooRE vecva
ey el k] 10 0
xs
prOY ok .
Veore veeavs ’ arst s
T T v o10F
S00ASSPINGOE u.
==
cooRisooma o Y o ADBLSO ;
SK ABRST 20 0mM
: o sncour
ot Rs LEpy
borue p
, ok wo
5 MICROUSB| == 5
i o
¢ w ™
K9 100MM . o] = =
o Voo = .
i crel e wr O
il uy
¥ ¥ RSl 1] e
] re
. DNF 3 DN
oomoon] Ve Lri
=
= w16 126 Conss
G oSt R
con ws
PaBIOIONR o 3
0o
oosu
boat LEps
fse vegavs
oo conuso 1 VeLLow [aReeN & o
boat.
c : oo = ¢
FTa232H >
03
vecvs PMEGH0R0ER 1S
s P L e
o =
-[. T3 qooRssoomn supio
e Sax
veny
B ED
al it
Wil 1o u%
10k 10 =
ue L o ens s
=3 R T o
W T Towr Tor Tottifior Tortr
o = =e
G G
> M e s M — N
@ GND
MIOMD MTEOM MTROMI oM
yis yis M7 \is o
MTHITMIL MTHIIMIL NTRIZMIL MTRIAIL AFTHIOMIL
: 2 s ‘ s .

Schematic download

11.2 SMT Process

11.2.1 OpenlMU330BI SMT Process

Contents

* LAND PATTERN
* SOLDER REFLOW PROFILE
* PACKAGE OUTLINE DRAWING

LAND PATTERN

1. Recommended land pattern of PCB is shown in Figure 1.

11.2. SMT Process 162

OpenlMU Documentation

F Akt Y ~ o I.f "I "\
1 !
e, L S T ., A A
ﬂ Ty 3 P
]
e L
S T P R
- - -— -
o .
b
— ’ -
- p—
S \
| |
e A
~ rd
{ i
L R
o~ = L =
i \ [
e A A
~ W T S T
T
A A L% A
I 5 z
i
L— L — o’ o

Fig. 1: Figure 1: Recommended land pattern (unit: mm)

SOLDER REFLOW PROFILE

Ll

BGA ball material is SAC305.
The carrier board material of OpenIMU330BI is suggested Tg180 FR4.
Reflow profile for Pb free process

Reflow is limited by 2 times. Second reflow should be applied after device has cooled down to room temperature
(25°0).

Recommended reflow profile for Pb free process is shown in Figure 2. The time duration of peak temperature
(260°C) should be limited to 10 seconds.

Type 4 solder paste is recommended for a better SMT quality.
Use no clean flux to avoid product contaminated by cleaning solvent.

It is recommended use underfill glue to manage certain threats to the integrity of the solder joints of the Open-
IMU330B], including peeling stress and extended exposure to vibration. and underfill glue was not required that
do not anticipate exposure to these types of mechanical stresses.

PACKAGE OUTLINE DRAWING

Dimensions are in mm

OpenIMU330BI Land Pattern,Solder Reflow Profile and Package Outline doc download

11.2. SMT Process

163

OpenlMU Documentation

Max. 2607
25T 3560

g

150180 °C Max 103

J

g

1207180

8

Max 6 s
251 /s

Package Surface Temperature ()

=

Time (5)

Fig. 2: Figure 2: Recommended solder reflow profile

11,43 20,15

_ 1 5.00 ‘0 -.-I| _ DaDA00S 0 T :f-‘ ,:_: :. B) _ _.___ 7 H)0E
=1\ 20 +0 17 _ D0.750.15
' d Imn d o o o1+
g O O O 0|0}
&3 a o000 00000 |gw
oo s 8] C0Q |g g
: d CQO0O0000000 |~ o
u o o o O 0O |
| A © o0 O BO
/ TP VI /" SIDE ViEw BOTIOM VIEW
s
Al BALL yd
CORNER INDICATOR SEATING PLAME

—

.| L7

ErD WIEW

Fig. 3: Figure 3: Mechanical package outline dimensions

11.2. SMT Process 164

OpenlMU Documentation

11.3 Interfaces

11.3.1 SPIl and UART

Contents

e Ports

* SPI & UART Messaging

Ports

The OpenIMU300BI can be configured in a number of ways for communication with external world. There are two
UART ports and one external SPI port.

Typical configurations include:

2 UART M

v ode « User UART
* Debug UART
* Debug UART

UART + SPI Mode « User SPI Port
* Debug UART

SPI & UART Messaging

To learn more about the OpenIMU SPI & UART Messaging Framework, please see the following pages:
1. SPI Messaging Framework

2. UART Messsaging Framework

11.4 Pinout

11.4.1 OpenlMU330BI Pinout and Function Descriptions

Dimensions are in mm
Schematic download

OpenIMU330BI pin assignment provided here - download link.

11.4.2 ARM Cortex M4 CPU

The OpenIMU330BI uses ST’s Cortex M4 series of Microcontrollers.
* FPU

11.3. Interfaces 165

https://openimu.readthedocs.io/en/latest/software/SPImessaging.html
https://openimu.readthedocs.io/en/latest/software/UARTmessaging.html

OpenlMU Documentation

PBo75+0.15

[a]

7 & 5 4 3 2 1
- . REVISIONS
L A) REV DESCRIFTION DATE APPROVED
_ 15.00 0.00 . 1_A INITIAL RELEASE BI2R/19 ¥ul
- - - - 2 A UPDATE THE THICKMESS OF THE PCE BOARD S/27/20 ¥ul .
|
\J; o O 11;— ,
o o o o O —
O0000C0O000 |
o oo E
o 00 | | &
OCOO0O000Q0
o o o O O A
O O O 5O !
o
¥ Ty
wy
=]
oy - (=]
Jl |
|" | | | | =]
=
! [=]
| | vy -
L L W O W 1 I '
B
CpeniMU30 POD A
S i
. B1S0-1500-02 | A

coam B0 | ke YA |,p 0y Wi SHEET | OF |

7]) 4 3 2
Fig. 4: OpenIMU330BI Module Mechanical Drawing

A B C D EF G H J K

1|1 O O O O
O O O O
OO0OO0OO0O0O00O0O0
O O
O O
OO0O0OO0O0O000O0
O O O O

O O O

C

o =1 o, ¢
OO0 O0O0OO0O0O0

Fig. 5: Pin Assignments, Bottom View

11.4. Pinout

166

OpenlMU Documentation

o Vo
n
Al cxp crio2 8 DEBUG-GPI0 DEEUG-GPIOZ
~—— GND VDD S —
22 | GND sweik (B3 D I DERUGSWOIE
— GND BOOTO —— = DEBUG-BOOTO
i; D, S ; USER-DEDY 1
S| GND DR — = - USEE-DEDY
S| GND VDD 5
=1 g;\;g s}n‘ilrc]- B Sl | GPS-1PPS
T . 1 =
g; GND SWDIO gs S DEBUG-SWDIO >
GHD GND —o—t .
DEBUG-RX | g%ggﬁ% gf DEBUG-RX SCLK gg Eg%%j%o { USER-5CK
DEBUG-TX - c;| DEBUG-TX DOUT (—= USER-MISO
H—== DNC VDD = .
S USER-UART BX [0 USER UART R R UART BX
C7 G4 USER-MOSI =
D3 | VPR DN &5 USER-NSS EISHE ST
B | GND cs —= USER-N5S
7] VDD GND =
£ GND GHND
VDD GHND -
Ef g = DEBUG-RESET [
. % GND FST = DEBUG-RESET »
[DEBUG-GPIOL DHBUG-GEOL ET | Gpio1 USER-UART_TX El USER-UART TX #SFR-UART TX
BGAYY

* DSP instructions
128KB Flash
64KB SRAM
80 MHz

* Rich Set of peripherals

* Low power

Learn more about OpenIMU330BI’s CPU at https://www.mouser.com/datasheet/2/389/stm321431cb-956249.pdf

11.5 Eval Kit

@
d

11.5.1 OpenlMU330BI Eval Kit

The OpenIMU330BI evaluation kit consists of a robust and easy-to-use eval board, a test fixture, the OpenIMU330BI
IMU module, and an ST-LINK J-TAG pod.

11.5. Eval Kit

167

https://www.mouser.com/datasheet/2/389/stm32l431cb-956249.pdf

OpenlMU Documentation

.
" 3 P

s

AN
LT TR

OpeniMU300

i :

©ST-Link/v2
Debugging and programming
STM8 and STM32 microcontrollers

OpenIMU330BI Overview
1. Introduction

The OpenIMU evaluation kit is a hardware platform to evaluate the OpenIMU330BI inertial navigation
system and develop various applications based on this platform. Supported by the Aceinna Navigation
Studio the kit provides easy access to the features OpenIMU330BI and explains how to integrate the
device in a custom design. The OpenIMU evaluation kit include OpenIMU330BI, evaluation board with
various interface connectors and test adapter for mounting OpenIMU330BI unit.

11.5. Eval Kit 168

OpenlMU Documentation

2. Components
* OpenIMU Evaluation board, which includes:
— Virtual COM-port USB interface, providing connectivity to OpenIMU330BI unit from PC
— Connector for programming and debugging target via Serial Wire Debug (SWD) interface
— Connector for interfacing OpenIMU330BI from custom-designed system.
— Test terminals for connecting oscilloscope or logic analyzers to the dedicated OpenIMU330BI signals.
¢ OpenIMU330BI unit. Please note, that it installed on the bottom side of evaluation board.
* Test fixture adapter for convenient aligned mounting of OpenIMU evaluation board and OpenIMU330BI unit
» ST-Link debugger for in-system development of application code
2.1 OpenIMU330BI unit

OpenIMU330BI is 9 DOF (degrees of freedom) fully calibrated tripple redundant inertial unit. It is used
as the base for development custom inertial navigation applications.

2.2 OpenIMU Evaluation board

OpenIMU Evaluation board designed to provide convenient way for communicating with OpenIMU330BI
unit from PC, to expose serial and SPI interfaces to developer and to debug applications using ST-Link
debugger vis SWD interface.

2.3 OpenIMU test adapter

OpenIMU test adapter used to firmly secure OpenIMU330BI unit and Open IMU evaluation board in
precisely aligned position.

11.5. Eval Kit 169

OpenlMU Documentation

2.4 ST-Link debugger

St-Link debugger is standard debugger provided by STMicroelectronics company. It used for in-system
debugging of applications via SWD interface.

3. Open IMU evaluation board Headers and Connectors
3.1 Connector for plugging in OpenIMU330BI unit (J2).

J2 is 20-pin connector and it used for connecting the OpenIMU330BI unit into Open IMU evaluation
board. The pin functions are described in the table on the “OpenIMU Modules » OpenIMU330BI - EZ
Embed Automotive Module » Connector Pinout - Including GPS Sensor Interface” page accessible from
the Contents bar on the left.

3.2 Extension Header (P4)

OpenIMU evaluation board has 12-pin extension header. It designed to expose IMU interface signals to
external system. The extension header pin functions described in table below

11.5. Eval Kit 170

OpenIMU Documentation

Pin Main Function Alternative Function
1 Power GND Power GND
2 Power GND Power GND
3
Serial Channel 1 RX SPI Chip Select (SS)
(Input) (Input)
4
IMU Data Ready GPIO
(SPI interface Mode) (UART interface mode)
5
User UART TX SPI Clock (SCK)
(Serial Channel 0) (Output)
(Output)
6 1PPS Input from GPS
Synchronization Input
7
SPI Data (MOSI))
(Input)
8 External Reset (NRST))
9
SPI Data (MISO)
(Output)
10 GPIO Output (1I02) GPIO Input
11 Power VIN 5 VDC Power VIN 5 VDC
12 GPIO Output (I03) GPIO Input
17
Debug UART TX
19
Debug UART RX

3.4 IMU interface type selection header (P1).
Pins 1-2 define IMU Interface Mode:

If there is no connection between pins 1 and 2 (jumper is OFF) - SPI mode.
if there is connection between pins 1 and 2 (jumper is ON) - UART mode (default).

11.5. Eval Kit

171

OpenlMU Documentation

In SPI mode:

Jumpers between pins 3-4 and 5-6 need to be taken OFF to prevent interference between
SPI bus signals (SS and MISO) and serial interface signals from FTDI chip.

IMU SPI interface signals (MISO, MOSI, SS, SCK, DRDY) routed to header P4.

Note: On SPI interface IMU acts as a SLAVE device.

Note: Not all provided application examples support SPI interface mode. Please refer to specific example for details.

In UART mode:

Jumper between pins 3-4 should be “ON”’ (default) if IMU Serial Channel 0 (USER main
channel) needs to be routed to PC via USB connection (on first in the row enumerated USB
virtual COM port. See p.6).

Jumper between pins 3-4 should be OFF if IMU Serial Channel 0 needs to be accessed from
P2 connector.

3.5 IMU Serial Debug Channel mode selection header (P2).

Jumpers between pins 1-2 and 3-4 should be ON if IMU Debug Serial needs to be routed to
PC via USB connection, for example in case of using IMU Debug Serial Channel for
streaming out debug information to PC or as CLI interface (on third in the row enumerated
USB virtual COM port. See p.6).

Jumpers between pins 1-2 and 3-4 should be OFF if IMU Debug Serial Channel needs to be
routed to some external device (for example GPS). In this case pin 2 is RX (to IMU) and pin
4 is TX (from IMU).

3.6 SWD (JTAG) connector (P3).

20-pin connector P3 used for connecting ST-Link or J-Link debuggers to the IMU for in-system debugging
of applications via SWD interface. It has standard pin-out.

Pin Main Function

1,2 Vref
4,6,8,10,12, 14,16, 18,20 | GND

7 SWDIO

9 SWCLK

15 nRST

19 3.3V from debugger

3.7 USB connector (J3)

11.5. Eval Kit 172

OpenlMU Documentation

USB connector used for powering up the IMU and evaluation board. Also its used to providing connec-
tivity from PC to IMU via virtual serial ports. Up to 3 exposed IMU serial interfaces can be routed to
PC.

4. OpenIMU evaluation board LED indicators
Evaluation board has few LED indicators for visual monitoring of data traffic on serial ports:
LED?2 indicator reflects activity on RX line of IMU main (user) serial interface (traffic to IMU)
LED1 indicator reflects activity on TX line of IMU main (user) serial interface (traffic from IMU)
LED3 indicator while lit indicates presence of the power (in case switch SW1 is “ON”)
LED4 indicator reflects activity on GPIO3 (lit if high)
LEDS indicator reflects activity on GPIO2 (lit if high)

5. Open IMU evaluation board power

Power to OpenIMU evaluation board provided by USB. To power system up - connect USB cable to
connector J1 and turn “ON” switch SW1.

6. Communication with IMU from PC

The OpenIMU evaluation board has an FTDI chip FT4232 installed. This chip provides 4 virtual serial
ports. When evaluation board set up to force IMU interface in UART mode (see p.3.4) up to 3 serial
ports on IMU can communicate with PC. When evaluation board connected to PC and power switch
turned “ON” in Device Manager board will appear as 4 new consecutive virtual COM ports.

First in a row virtual port is routed to IMU’s main UART channel (Serial channel 0) (pins 3
and 4 on J2), and usually dedicated for sending commands to IMU and capturing responses
and periodic messages from IMU. It usually used by python driver to establish
communication between IMU and Aceinna Navigation Studio.

Third in a row virtual port routed to IMU’s Debug Serial Channel (pins 17 and 19 on J2) and
usually used as a debug/CLI serial channel .

11.5.2 OpenlMU330BI Evaluation Kit Setup

To set up OpenIMU330BI evaluation kit for development you’ll need to perform next steps:

1. Unpack OpenIMU330BI evaluation kit.
2. Push power switch to “OFF” position.

3. Connect OpenIMU330BI evaluation board to the PC via USB cable. USB connection provides power to the test
setup as well as connectivity between PC and IMU serial ports.

4. Connect ST-Link debugger to the PC via USB cable.
5. Connect OpenIMU330BI evaluation board to ST-Link debugger using provided 20-pin flat cable.
6. Push power switch to “ON” position.
Now you are ready to debug and test your application.
* The following activities are addressed in the “Development Tools” section:
— Download App with JTAG
— Debugging with PlatformIO Debugger and JTAG Debug Adapter

11.5. Eval Kit 173

OpenlMU Documentation

— Graphing & Logging IMU Data using the Acienna Navigation Studio
OpenIMU Evaluation Kit Important Notice

This evaluation kit is intended for use for FURTHER ENGINEERING, DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is not a finished product and may not
— (yet)

comply with some or any technical or legal requirements that are applicable to
—finished products,

including, without limitation, directives regarding electromagnetic compatibility,
—recycling (WEEE),

FCC, CE or UL (except as may be otherwise noted on the board/kit). Aceinna supplied
—this board/kit

"AS IS," without any warranties, with all faults, at the buyer's and further users'
—~sole risk. The

[

user assumes all responsibility and liability for proper and safe handling of the
—goods. Further,

the user indemnifies Aceinna from all claims arising from the handling or use of the
—goods. Due to

the open construction of the product, it is the user's responsibility to take any and,
—all appropriate

[

precautions with regard to electrostatic discharge and any other technical or legal
—concerns.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR ACEINNA

SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES.

No license is granted under any patent right or other intellectual property right of |
—Aceinna covering

or relating to any machine, process, or combination in which such Aceinna products or
—~services might

be or are used.

Note: In OpenIMU330BI EVK by default signs of readings on X and Z axes are flipped in comparison to the
Coordinate Frame drawing on top of the EVK board since OpenIMU330BI unit mounted upside-down in the EVK.

11.5.3 OpenlMU330BI Eval Board & Coordinate Frame

OpenlMU330BI Eval Board and Fixture

The OpenIMU330BI Eval Board is attached to a fixture for easy handling and isolation of the back side of the board

11.5. Eval Kit 174

OpenlMU Documentation

from any contact. The EVB interfaces to the main connector of the OpenIMU330 evaluation module. The EVB and
IMU module are mounted together to a precision fixture to assist in testing. The OpenIMU330EVB uses an FTDI
4-port Serial-to-USB converter to allow you to communicate with between the OpenIMU serial ports and a laptop
computer. There are also jumper connections to use to connect to the device’s primary SPI port. Use the JTAG
interface to directly download compiled code to the device quickly.

OpenlMU330BI Eval Module Default Coordinate System

The OpenIMU default coordinate systems is shown below. In the reference IMU apps, a configuration setting is
provided to control the coordinate system. These configurable elements are known as Configuration Parameters.

+X (Ux)
BN +Y (Uy)

=" P Roll
5 Pitch

+2Z (Uz)

11.6 Firmware Update

11.6.1 OpenIlMU330BI Firmware Update
In comparison to OpenIMU300ZI and OpenIMU300RI, OpenIMU330BI does not have built-in bootloader. The rea-
son behind it that OpenIMU300BI uses processor with less resources and sometimes if application is big — there

would be now room to fit it in if bootloader present. There are two scenarios how FW update can be performed for
OpenIMU330BI.

Using JTAG (SWD) interface

OpenIMU330BI has standard SWD interface. Next pins are used:

Pin # | Pin Function | Note

K3 SWCLK

12 SWDIO

F3 RESET
VIN Reference voltage
GND Ground

SWD interface allows to perform programming of application into unit from development environment or using special
utilities, for example ST-Link Utility.

Note:
» Application image should be programmed from address 0x08000000

* Last 6 sectors of MCU flash should not be erased during programming. They contain calibration parameters.

11.6. Firmware Update 175

OpenlMU Documentation

* For unit to work properly last 6 sectors need to be write-protected. Write protection performed at the factory but
in case of unit recovery it needs to be performed again.

*» To be able to recover unit read and save full original image first (from address 0x08000000, length 0x20000).

Using built-in MCU bootloader

Application image can be programmed into the unit via serial interface using built into the processor boot loading
capability.

Next pins on OpenIMU330BI are used in this case:

Pin # | Pin Function Notes

K1 BOOTO 33V

G7 USER_UART_RX (to unit) 0-3.3V

F1 USER_USRT_TX (from unit) | 0 -3.3V

F3 RESET 0 - 3.3V Optional
GND

Next sequence needs to be executed to force unit into boot loading mode:

1. Connect serial RS232 interface from PC to unit using RS232-TTL convertor. There may be also direct USB-TTL
serial adapter.

2. Provide HIGH level on BOOTO pin.
3. Power up unit or apply RESET signal (active low. Time > 10 milliseconds).
4. Start custom boot loading utility or ST Micro utility and follow the steps in the documentation.
User can choose to implement their own boot loader or use utilities provided by ST-Micro.
In first case find boot loading application note AN3155 here:
https://www.st.com/content/st_com/en/search.html#q=AN3155-t=resources-page=1
In second case find ST Flash Loader Utility here:

https://www.st.com/en/development-tools/flasher-stm32.html

Note:

¢ In case if unit is not recognized by ST Flash Loader, place file STM32L4_128K.STmap (download below) into
MAP directory (created during tool installation)

» Application image should be programmed from address 0x08000000
¢ Last 6 sectors of MCU flash should not be erased during programming. They contain calibration parameters.

* For unit to work properly last 6 sectors need to be write-protected. Write protection performed at the factory but
in case of unit recovery it needs to be performed again.

* To be able to recover unit read and save full original image first (from address 0x08000000, length 0x20000).

File STM32L4_128K.STmap download

11.6. Firmware Update 176

https://www.st.com/content/st_com/en/search.html#q=AN3155-t=resources-page=1
https://www.st.com/en/development-tools/flasher-stm32.html

OpenlMU Documentation

11.7 Ready to Use Application

To learn about Ready-to-Use-Apps information & available for immediate download to your OpenIMU, please see the
following pages:

1. Ready-to-Use-Applications Information
2. Need to run the OpenIMU server before running one of the ready to use applications

3. Then upload a prebuilt app to your OpenIMU

11.7. Ready to Use Application 177

https://openimu.readthedocs.io/en/latest/apps.html
https://developers.aceinna.com/devices/connect
https://developers.aceinna.com/code/apps

cHAPTER 12

OpenIMUB35RI - Triple-Redundant Rugged Industrial CAN Module

Contents

* Introduction

* OpenIMU335 Product Page
* Datasheet

» User Manual

* Eval Kit

* OpenIMU Development Environment

* Ready to Use Applications

12.1 Introduction

The ACEINNA OpenIMU335RI is an easy-to-use high-performance 6-DOF (9 DOF is optional) open inertial platform
packaged in a rugged sealed over-molded plastic housing. The OpenIMU335RI includes triple-redundant 3-Axis
MEMS accelerometers and rate gyros which are fully calibrated over the operating temperature range. A 3-axis
magnetic sensor is also available as an option. The processing power is provided by a 168MHz ARM M4 CPU with
a Floating Point Unit. The OpenIMU335RI runs the OpenIMU open-source stack that includes an optimized 16-state
Kalman Filter for Attitude and GPS-Aided PositionVelocity-Time (PVT) measurement. A free tool-chain based on
VS Code supports PC, MAC, and Ubuntu.

* Hardware
— 0.1 degrees of accuracy over temperature and angle
— Precision 3-axis MEMS Accelerometer

— Low-Drift 3-axis MEMS angular rate sensor

178

OpenlMU Documentation

Fig. 1: OpenIMU335 Module

12.1. Introduction 179

OpenlMU Documentation

Triple-redundant architecture with fault detection

3-axis AMR Magnetometer (Optional)
— CAN 2.0 and RS232 Interfaces

168 MHz ARM M4

Wide Temp Range, -40C to +85C

Wide Supply Voltage Range, 9 V-32V

P67 Ampseal Connector
High Reliability, MTBF > 50k hour

* Firmware and Firmware Support

In-System Firmware Upgrade

Open Source Tool Chain
— Open Source Algorithms (VG / AHRS / INS)

Built in 16-State Open Source Extended State Kalman Filter

Open Community & Support

Aceinna Navigation Studio Interface

The default coordinate frame for the OpenIMU335RI is given in the below image. The coordinate frame can be
changed via RS-232 or CAN message. Refer to the user manual of the part for details.

12.2 OpenIMU335 Product Page

The OpenIMU335RI product page is at: https://www.aceinna.com/inertial-systems/OpenIMU335RI. Refer to this
page for a product summary and direct links to the datasheet, user manual and DBC file for the CAN interface.

12.3 Datasheet

The datasheet of the OpenIMU335RI can be downloaded from this datasheet link. Refer to this document for:
¢ Detailed Specifications
— Performance

Electrical

Physical
Environmental

- EMC

* Features
¢ Qualifacation Plan Summary

¢ Module Dimensions

12.2. OpenlMU335 Product Page 180

https://www.aceinna.com/inertial-systems/OpenIMU335RI
https://navview.blob.core.windows.net/web-resources/6020-3321-01_A%20OpenIMU335RI.pdf?_t=1621434422158

OpenlMU Documentation

+X Axis

+Y Axis

Pitch

+7Z Axis goes out the bottom
of the unit

Fig. 2: OpenIMU335RI Default Coordinate Frame

12.3. Datasheet 181

OpenlMU Documentation

¢ Part Ordering Information

12.4 User Manual

The user manual for the OpenIMU335RI can be downloaded from this user manual link. Refer to this document for
details of the:

* Electrical and Mechanical Interfaces

* Theory of Operation

 Safety Features

* CAN Inferface and CAN Messages

¢ RS-232 Interface and RS-232 Messages
* Bootloader

e Warranty and Support Information

12.5 Eval Kit

12.5.1 OpenIlMU335RI Eval Kit

OpenIMU335RI Evaluation Kit Introduction

The OpenIMU evaluation kit is a hardware platform used to evaluate the OpenIMU335RI inertial navigation system
and develop various applications based on this platform. A difference to standard part is that a JTAG (SWD) 20-pin
header is brought out for code development. It is supported by Aceinna Navigation Studio, which enables the user to
quickly evaluate the part. The Components section below details the contents of the kit.

Note: An external DC power supply is required. The power supply must be able to provide 100mA at 9VDC to
32VDC.

12.4. User Manual 182

https://navview.blob.core.windows.net/web-resources/7430-3321-01%20User%20Manual%20OpenIMU335.pdf?_t=1621434422173

OpenlMU Documentation

Ace

OpenIMU335RI EVK
P/N 8350-3324-01

OpenIMU335RI Evaluation Kit components
OpenIMU335RI Evaluation Kit fixture and JTAG header board

* The OpenIMU335RI unit with JTAG header board are mounted on the test fixture. The JTAG header provides a
means to debug/upload applications to the evaluation unit.

12.5. Eval Kit 183

OpenlMU Documentation

ST-Link debugger

* The ST-Link V2 programmer / debugger is a standard JTAG SWD debugger provided by STMicroelectronics
company. It is used for in-system debugging/uploading of applications via SWD interface.

12.5. Eval Kit 184

OpenlMU Documentation

SST-Link/v2

Debugging cnd programming
STM8 cnd STM32 microcontrollers

OpenIMU335RI Breakout Cable

* An included cable provides a means of connecting the unit to a PC via RS232 interface, connecting the unit to
the CAN bus, and powering the unit. The next table shows the connector pin assignments of the supplied cable.

Signal Name
Unit RS232 CAN Power
Connector Connector Connector Wires
GND 3 5 Black
VIN 6 Red
RS232 TX 5 2
RS232 RX 4 3
CANH 1 7
CANL 2 2

OpenIMU335RI Connector

The connector of the breakout cable is shown in the following image. See the notes below for details of how to connect
to and disconnect from the OpenIMU335RI.

The pin numbers are as follows:

Note: To connect the cable to the OpenIMU300RI evaluation unit:
* Align the keys on the unit and the cable connector.

* Push the 6-pin cable connector into the unit connector until lock clicks.

12.5. Eval Kit 185

OpenlMU Documentation

12.5. Eval Kit 186

OpenlMU Documentation

* If an extra lock is required - push the red latch under the black latch. This prevents the disengagement button
from being depressed.

Note: To disconnect the cable from the from OpenIMU335RI evaluation unit:
* If engaged, pull the red latch away from the connector toward the cable.
* Push down on the black disengagement button in the middle of the connector.

* Pull the cable connector away from the unit.

12.5.2 OpenlMU335RI Evaluation Kit Setup

To get started with the OpenIMU335RI evaluation kit connect the breakout cable to the evaluation kit.
* Connect the RS232 connector of the cable to a PC if you wish to evaluate using Aceinna Navigation Studio.

* To evaluate the part using the CAN interface simply connect to either a CAN analyzer, or network, and refer to
the CAN Port Interface Definition section of the user manual.

* Connect RED (+) and BLACK (GND) wires to an external power supply (9 - 32V, 0.1A)
Refer to the Aceinna Navigation Studio website where there is documentation on how to:

* Download a PC server application that will allow you to evaluate the part over the RS-232 interface using the
Chrome® web browser: https://developers.aceinna.com/devices/connect

e Update the firmware on the OpenIMU335RI using one of Aceinna’s pre-compiled applications: https://
developers.aceinna.com/code/apps

* Install the OpenIMU programming environment for user code development: https://developers.aceinna.com/
docs/install

The following activities are addressed in the 7ools section:
* How to uload an App via JTAG
¢ Debugging with the PlatformIO Debugger and JTAG Debug Adapter
* Graphing & Logging IMU Data using the Acienna Navigation Studio
OpenIMU Evaluation Kit Important Notice

This evaluation kit is intended for use for FURTHER ENGINEERING, DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is not a finished product and may not
— (yet)

comply with some or any technical or legal requirements that are applicable to,
—finished products,

including, without limitation, directives regarding electromagnetic compatibility,
—recycling (WEEE),

FCC, CE or UL (except as may be otherwise noted on the board/kit). Aceinna supplied
—this board/kit

"AS IS," without any warranties, with all faults, at the buyer's and further users'
—sole risk. The

user assumes all responsibility and liability for proper and safe handling of the
—goods. Further,

the user indemnifies Aceinna from all claims arising from the handling or use of the
—goods. Due to

the open construction of the product, it is the user's responsibility to take any and,

Sall appropriat (continues on next page)

12.5. Eval Kit 187

https://navview.blob.core.windows.net/web-resources/7430-3321-01%20User%20Manual%20OpenIMU335.pdf?_t=1621434422173
https://developers.aceinna.com/
https://developers.aceinna.com/devices/connect
https://developers.aceinna.com/code/apps
https://developers.aceinna.com/code/apps
https://developers.aceinna.com/docs/install
https://developers.aceinna.com/docs/install

OpenlMU Documentation

(continued from previous page)

precautions with regard to electrostatic discharge and any other technical or legal
—concerns.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR ACEINNA

SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES.

No license is granted under any patent right or other intellectual property right of |
—Aceinna covering

or relating to any machine, process, or combination in which such Aceinna products or
—services might

be or are used.

12.6 OpenlMU Development Environment

For details of the OpenIMU development environment refer to:

12.7 Ready to Use Applications

To learn about Ready-to-Use-Apps available for immediate download to your OpenIMU, please see the following
pages:

1. Information about rady-to-Use-Applications

2. Run the OpenIMU server before uploading or using a prebuilt app

3. Upload a prebuilt app to your OpenIMU

12.6. OpenlMU Development Environment 188

https://openimu.readthedocs.io/en/latest/apps.html
https://developers.aceinna.com/devices/connect
https://developers.aceinna.com/code/apps

Part 111

Dev Support Algorithms

189

cHAPTER 13

OpenIMU Hardware/Software Interface

This section describes firmware-configurable connections from external hardware to the OpenIMU platform. In par-
ticular, it describes how external connections are connected and how the platform code modules are inputs and work
together. If the platform cannot support the connection (such as the OpenIMU300RI(then this section is not applicable.
Examples of external sources include:

* Synchronization to external clock signals
* GPS receiver input
e Odometer input

If the input is provided via a software interface, such as CAN, then this section is not applicable.

13.1 Synchronization to External Clock Signals

Contents

* Connecting an External Clock

* Configuration Settings

* Post-Synchronization Operations

External clock signals provide a way for the system to synchronize sensor sampling and processing, as well as algo-
rithm operations, to an external source. In general, this can improve the performance of inertial systems and algorithms
by enhancing the time-relevancy measurement of the sensor output, via a highly accurate timestamp with micro-second
resolution, or by enabling algorithm updates with information that is more timely.

By default the system is configured to synchronize to a 1 kHz signal; all that is required is to connect the signal to the
OpenIMU device. However, to enable synchronization lock to an external 1 Hz signal (such as the GPS PPS signal)
the user must configure the firmware to operate with a 1 Hz external clock by calling platformEnableGpsPps(TRUE);
during system initialization.

190

hw_sw_interface/synchronization.html#synchronization-to-external-clock-signals
hw_sw_interface/gps_input.html#gps-receiver-input-signal
hw_sw_interface/odometer.html#connecting-to-an-external-odometer

OpenlMU Documentation

13.1.1 Connecting an External Clock
To synchronize the system to an external clock, the first step is to connect the signal to the appropriate pin for the
device being used:

1. OpenIMU300ZI: Pin 2 serves as the clock input (OpenIMU300ZI Connector Pinout)

2. OpenIMU330BI: Pin J3 serves as the clock input (OpenIMU330BI Connector Pinout)

3. OpenIMU300RI: No pin available for synchronization to external clock

13.1.2 Configuration Settings

The second step in synchronizing to an external clock signal is to configure the firmware to use the external signal
connected to the external clock pint. As mentioned above, the system is automatically configured to use a 1 kHz.
To connect and synchronize to a 1 Hz signal, the user must configure the firmware by calling platformEnableGp-
sPps(TRUE);. An ideal place to perform this task is during initialization of the user-generated algorithm, commonly
executed in dataProcessingAndPresentation.c.

The following code snippet shows how the INS application initializes the system to synchronize to the 1 PPS signal:

// Next function is common for all platforms, but implementation of the methods,
—~inside is
// platform-dependent. Call to this function is made from DataAcquisitionTask during,
—the
// initialization phase. All user algorithm and data structures should be initialized
// here, if used.
void initUserDataProcessingEngine ()
{

InitUserAlgorithm(); // default implementation located in file user_
—algorithm.c

platformEnableGpsPps (TRUE); // Init PPS sync engine
}

13.1.3 Post-Synchronization Operations
Once the system is configured to synchronize to the expected input clock signal, there are a variety of functions
available to take advantage of the synchronization. Two such functions are:

1. platformGetSolutionTstampAsDouble()

2. platformGetEstimatedITOW()

Additionally, users can take advantage of the PPS synchronization by monitoring for, and responding to, the PPS
signal using the function platformGetPpsFlag(TRUE);, where TRUE indicates that the PPS flag is reset after reading.

The time delay between the PPS signal and the availability of the GPS data can be measured using the function
getSystemTime(). This measurement can then be used to account for by the delay in the algorithm.

13.2 Connecting to a GPS Receiver Input Signal

Contents

* Connecting a GPS Receiver

13.2. Connecting to a GPS Receiver Input Signal 191

../300ZI/pinout.html#connector-pinout-including-gps-sensor-interface
../330BI/pinout.html#openimu330bi-unit-package-pinout

OpenlMU Documentation

* Configuration Settings

* Post-Connection Operations

THIS IS A PLACEHOLDER PAGE

External GPS receiver signals provide a way for the system to acquire knowledge of the system position and velocity
in the Earth’s reference frame. This page serves as a placeholder for the description of the connection to the GPS
receiver. In addition to connecting to the receiver, the unit needs to know what format the input signal will be (for
example, NMEA or NovAtel) and what the message will be (GGA vs VTG, etc.).

13.2.1 Connecting a GPS Receiver

To connect the system to an external GPS receiver, the first step is to connect the TX and RX lines to the appropriate
pins for the device being used:

1. OpenIMU300ZI: Pins 17 and 19 serve as the GPS input pins (OpenIMU300ZI Connector Pinout)

2. OpenIMU330BI: Pin X and Y serve as the GPS input pins (OpenIMU330BI Connector Pinout)

3. OpenIMU300RI: No pin available for connection to GPS receiver

13.2.2 Configuration Settings

The second step in connecting to a GPS receiver is to configure the firmware to use the signals. An ideal place to
perform this task is during initialization of the user-generated algorithm, commonly executed in dataProcessingAnd-
Presentation.c.

13.2.3 Post-Connection Operations

Once the system is configured to accept and decode the GPS receiver input, ...
1. Functionl()
2. Function2()

13.3 Connecting to an External Odometer

Contents

* Connecting an Odometer

* Configuration Settings

* Post-Connection Operations

THIS IS A PLACEHOLDER PAGE

External odometer signals provide a way for the system to acquire knowledge of the system velocity and heading
relative to the vehicle-frame. This page serves as a placeholder for the description of the connection to the odometer.
In addition to connecting to the odometer, the unit needs to know what format the input signal will be and what the
message will be.

13.3. Connecting to an External Odometer 192

../300ZI/pinout.html#connector-pinout-including-gps-sensor-interface
../330BI/pinout.html#openimu330bi-unit-package-pinout

OpenlMU Documentation

13.3.1 Connecting an Odometer
To connect the system to a non CAN-based, external odometer, the first step is to connect the signal lines to the
appropriate pins for the device being used:

1. OpenIMU300ZI: Pins X and Y serve as the input pins (OpenIMU300ZI Connector Pinout)

2. OpenIMU330BI: Pin X and Y serve as the input pins (OpenIMU330BI Connector Pinout)

3. OpenIMU300RI: No pin available for connection to odometer

13.3.2 Configuration Settings

The second step in connecting to an odometer is to configure the firmware to use the signals. An ideal place to perform
this task is during initialization of the user-generated algorithm, commonly executed in dataProcessingAndPresenta-
tion.c.

13.3.3 Post-Connection Operations

Once the system is configured to accept and decode the odometer input, ...
1. Functionl()
2. Function2()

13.3. Connecting to an External Odometer 193

../300ZI/pinout.html#connector-pinout-including-gps-sensor-interface
../330BI/pinout.html#openimu330bi-unit-package-pinout

cHAPTER 14

EKF Algorithms

This section develops the equations that form the basis of an Extended Kalman Filter (EKF), which calculates position,
velocity, and orientation of a body in space'. In a VG, AHRS, or INS? application, inertial sensor readings are used to
form high data-rate (DR) estimates of the system states while less frequent or noisier measurements (GPS and inertial
sensors) act as references to correct errors in the system.

In addition to deriving the EKF equations, this description presents a measurement model based on Euler angles, which
result from accelerometers, magnetometers, and GPS readings. Following that it describes implementations that result
in improved solutions under both static and dynamic conditions. Finally, a series of examples illustrate existing VG,
AHRS, and INS algorithms.

The algorithm development description is broken up into a series of sections that build upon one another, as follows:
¢ Coordinate Frames
¢ Attitude Parameters
* Sensors
¢ Extended Kalman Filter
* Process Models
¢ Measurement Model
* Measurement Vector
¢ Innovation (Measurement Error)
* Magnetic Alignment

e References

! This discussion presupposes a certain amount of knowledge. Details related to differential equations, linear algebra, multi-variable calculus,
stochastic processes, etc. are not described.

2 A VG uses rate-sensors and accelerometers to estimate roll and pitch. An AHRS incorporates magnetometer readings to the VG to esti-
mate heading. An INS adds GPS messages to the VG or AHRS to estimate position and velocity or provide a way to estimate heading without
magnetometers.

194

OpenlMU Documentation

14.1 Coordinate Frames

A body’s position and orientation can only be measured relative to another set of basis vectors (coordinate-frame).
In this formulation, inertial sensors provide the information to compute the attitude and position of a body in space
relative to an “inertial” frame, such as the Earth-Centered, Earth-Fixed frame (ECEF) or the North/East/Down-frame
(NED)'. The equations to come use the superscripts listed in Table 1 to specify the frame in which a variable is
measured.

Table 1: Table 1: Frames and their Identifiers used throughout Al-
gorithm Derivation

Frame Superscript Description
ECEF-Frame E

Frame aligned with Earth’s axis
(z-axis parallel to axis-of-
rotation, x-axis exits at the equator
through the prime-

meridian); rotates with the Earth
(not shown in Figure 1)

NED-Frame N

Frame aligned with the local
tangent-frame (z-axis parallel to
the gravity vector) with the x-axis
aligned with true or

magnetic north. Red lines in Figure
1.

Perp-Frame 1

Frame aligned with the local
tangent-frame (z -axis

parallel to the gravity vector). Dark
blue lines in Figure 1

Body-Frame B

Frame aligned with the body-frame.
x| -axis lies in the

plane formed by the x; and

z -axes. Light

blues lines in Figure I

Figure I shows the relative orientation of three of the four frames listed in Table 1 (ECEF not shown) for a hypothetical
body on the surface of the Earth with a roll of 20°, a pitch of 10°, and a heading of 30°. The dashed red lines illustrate
the components of the _L-frame axes in the N-Frame while the dashed blue lines indicate the projection of the B-Frame
axes onto the N-frame.

! Strictly speaking, neither the ECEF-frame nor the NED-frame are inertial. Both move and rotate relative to the stars; the NED-frame changes
with location as well. However, the two are sufficient for use with the OpenIMU line of products.

14.1. Coordinate Frames 195

CoordFrames.html#id2

OpenlMU Documentation

Line of
Const. Lon.

Fig. 1: Figure 1: Coordinate Frames used in Derivation (N, perp, and B-Frames)

14.2 Attitude Parameters

Contents

* Direction Cosine Matrices

e Quaternion Elements

* Euler Angles

* Mathematical Relationships between Attitude Parameters

* Attitude Parameters Example

This paper makes use of three different attitude parameters to specify the orientation of a body (B) relative to another
frame (such as the N-frame).

1. Direction Cosine Matrices
2. Quaternion Elements

3. Euler Angles

14.2.1 Direction Cosine Matrices

The first of these, the direction cosine matrix', V R, specifies the relationship of one frame relative to another by

relaying how the basis-vectors of one frame relate to the basis-vectors of another. These matrices have the property

! Pronounced “R B-in-N"" and refers to the orientation of the B-Frame in the N-Frame. Also referred to as a rotation transformation matrix.

14.2. Attitude Parameters 196

OpenlMU Documentation

that they can, in a straightforward manner, transform vectors from one frame into another, such as from the Body to
the NED-frame:

:E»N:NRB.:Z:B

In the upcoming derivation, transformations based on the Body-Fixed 3-2-1 Rotation set” and the formulation used by
Thomas Kane® are relied upon extensively.

14.2.2 Quaternion Elements

The second parameter used to convey orientation information are quaternion elements* (also called Euler parameters),
NgB. Quaternions are relatively easy to propagate in time and do not possess singularities. However, they are not
intuitive. Quaternions consist of a scalar and a vector component:
N =B 1T
q = [QO Q'u]

= [cos (g) ﬁ~sin(%)]T

14.2.3 Euler Angles

The final parameter used to relay attitude information are Euler angles. These are more intuitive than quaternions
but, unlike quaternions, experience singularities at certain angles (based on the selected rotation sequence). For a
321-rotation sequence’, the singularity occurs at a pitch of 90°.

14.2.4 Mathematical Relationships between Attitude Parameters

All three parameters contain the same information. The equations that relate the various parameters follow®. For a
321-rotation sequence, the expression relating the rotation transformation matrix of the body-frame in the NED-frame,
NRB to the quaternion elements, N q°, is:

w0 +at-e?—¢? 2-(-e—qw-a) 2 -(q-9+q-)
=| 2 (@-at+q-a) @ -a’+e’-¢> 2 (e G—0 a)
2'((11'(13*(10'(12) 2'(Q2‘Q3+QO‘Q1) 0% — ¢1* — 2* + ¢3°

NRB

2 A 3-2-1 rotation set defines the attitude of one set of basis-vectors (local-frame) relative to another by specifying the angles of rotation required
to get from the inertial (N) to the local-frame (L). With the local and inertial-frames initially aligned, the rotations are performed in the following
order: the first is about the local z-axis (3), followed by a rotation about the local y-axis (2), and finally by a rotation about the local x-axis (1). The
resulting matrix, NRL = R321, is composed of column vectors formed from the xyz-axes of the local-frame coordinatized in the inertial-frame:
NRL: [i'LN gLN éLN .

3 Kane, Thomas R.; Levinson, David A. (1985), Dynamics, Theory and Applications, McGraw-Hill series in mechanical engineering, McGraw
Hill. Note: one main difference between Kane’s approach is the DCM is the transpose of the DCM of other formulations; I think Kane’s formulation
is more intuitive.

4 Commonly referred to simply as “quaternion”. To make it easier to reference the elements in c, c++, and python, the first quaternion-element
(the scalar component of the quaternion) will have the zero index and is expressed as go = cos (9 / 2). The vector component of the quaternion,
gy = U - sin (9/2), occupies elements 2, 3, and 4.

5 The 321-rotation sequence is the only rotation sequence considered in this paper.

6 Based on unpublished notes by Keith Reckdahl (Direction Cosines, Rotations, and Quaternions); this paper follows Kane’s approach closely.
Any reference on the subject will work.

14.2. Attitude Parameters 197

OpenlMU Documentation

N RPE can also be expressed in terms of Euler-angles, V67 = [L¢P LB Nyt] T

cos (J‘HB) —sin (NwJ-) 0 cos (J-QB) sin (J-GB) - sin (J-QSB) sin (J-HB) - COS (J-gbB)
NRB = | sin (NwL) cos (Nwl) 01- 0 cos (quSB) —sin (ngSB)
0 0 1 —sin (J-@B) cos (J-HB) - sin (J-QSB) cos (J-GB) - COoS (J-QSB)

In this case, ¥ RP is broken up into two sequential transformations, which separate the roll and pitch calculations
from the heading (this method is used later to form attitude measurements from the accelerometer and magnetometer
readings):

NpB _Npl LpB
Finally, Euler angles, v 65, can be expressed in terms of quaternion-elements, ~ ¢7:

Lo =atan2(2- (g2 g3+ g0 @1), @0 — @1 — % + ¢3?)

108 = —asin(2- (¢1- 93 — g0 - ¢2))

Nyt =atan2(2- (1 @2 + 90 - q3), 90> + @2 — @2 — ¢3?)

Note: Due to the way the roll and pitch are separated from the heading, the Euler angles, ~¢®, 07, and V¢! are
the same if written as VB, V0B, and Ny B.

14.2.5 Attitude Parameters Example

Using the direction cosine matrix formulation, the transformation to get from the body to inertial-frame (ECEF) in
Figure 1 is composed of multiple transformations:

EpB _ERN Npl LpB

Each transformation describes how one coordinate frame is related to the next in the sequence of rotations.
1. L RE: Transformation from the (light-blue) body-frame to the (dark blue) local perpendicular-frame (L)
2. VRL: Transformation from the (dark blue) _L-frame to the (red) local NED-frame

3. RN Transformation from the (red) NED-frame to the ECEF-frame (ECEF-Frame not shown; black line are
latitude and longitude lines). ©RY is based on the WGS84 model.

This notation not only makes the formulation easier by simplifying the full complexity of the transformation but it
helps avoid confusion by explicitly specifying the frame used in each calculation.

Some additional information about these frames:

1. RN, the transformation between the NED and Earth-frame (used in the INS formulation), is solely a function
of ECEF location, “ RN = f(#F), and is based on the WGS84 model.

2. NRB the transformation between the NED and body-frame is solely a function of the attitude of the body-frame
(roll, pitch, and heading angles of the body) and can be measured by the local gravity and magnetic-field vectors
(or GPS heading), Y R® = f(g,b)

14.2. Attitude Parameters 198

OpenlMU Documentation

14.3 Sensors

Various sensors are used to obtain the information needed to estimate the position, velocity, and attitude of a system
(Table 2) . Measurements from these sensors, taken over time, are combined using an Extended Kalman Filter (EKF)

to arrive at an estimates that are more accurate or more timely than ones based on any single measurement.

Table 2: Table 2: Inertial Sensors and Measurement Type

Measurement

Sensor

Description

Position

GPS

GPS provides position (Latitude/Longitude/Altitude) and
supplemental information (like standard deviation) to

the algorithm. This is used to update the errors in the
position (integrated velocity) estimate.

Velocity

1) Accelerometer
2) GPS

Accelerometers provide the high DR/low-noise signal
that is integrated to get high DR velocity information.
GPS provides velocity and supplemental information to
the algorithm (velocity, heading, latency, etc), which is
used to update errors due to integration of the
accelerometer signal (in particular, to estimate the
accelerometer bias).

Roll/Pitch

1) Angular-Rate
Sensor
2) Accelerometer

Angular-rate sensors provide the high DR/low-noise
signal that is integrated to get high DR attitude
information. Accelerometers are used as a gravity
reference to update errors due to integration of the rate-
sensor signal (in particular, to estimate the rate-sensor
bias).

Heading

1) Angular-Rate
Sensor

2) Magnetometer

3) GPS

Angular-rate sensors provide the high DR/low-noise
signal that is integrated to get high DR heading
information. Magnetometers are used as a north-
reference to update errors due to integration of the rate-
sensor signal (in particular, to estimate the z-axis rate-
sensor bias). GPS also provides heading information,
which is used in lieu of magnetometer readings and can
be more accurate (less prone to disturbances) than the
magnetometer but available less often.

Other sensors, such as odometers, barometers, cameras, etc., may be incorporated into the EKF formulation to get
improved results. However, incorporating data from any additional sensors would require a reformulation of the
algorithm presented here.

14.3. Sensors

199

Sensors.html#id4

OpenlMU Documentation

Inertial sensors measure the true motion and attitude of a system, corrupted by bias, noise, and external influences. For
instance, the accelerometer signal is a combination of platform motion and gravity', as well as sensor bias and noise.
Simplified equations for the three sensors are provided below:

Wmeas = Wtrue + Whias T Wnoise

Umeas = Amotion T Qgrav + Gbias T Gnoise

—

Mmeas = bmotion + Mbpias + Mnpoise

Items, such as misalignment, cross-coupling, etc. are ignored in this formulation they are accounted for during system
calibration.

Additionally, sensor bias can be broken down further. In this paper, bias is modeled as a constant offset plus random
drift:

Whias = Wof fset + Wdrift

The magnetic field vector, b, may be corrupted by hard and soft-iron sources present in the system in which the part is
installed. Hard and soft-iron effects can be estimated by performing a “magnetic-alignment”” procedure once installed
in the end-user’s system. The equations relating the hard and soft-iron effects® on the measured magnetic field is:

- ™—-1 7, 5 - -
Mmeas = (Rsr - Ssr-Rsr') - b+ Mpr + Mbias + Minoise

Where Rg; and Sg; represent the rotation and scaling of the magnetic-field, l;, due to soft-iron effects; m g is the bias
change in the magnetic-field due to hard-iron in the system. Sensor gain is measured during the calibration process
with the system at room temperature; it does not vary much over temperature. Sensor bias, however, is strongly linked
to temperature. The calibration process measures bias over temperature (from -40° C to +85° C). The temperature
effect on the magnetometer is “ratiometric”’; the unitized magnetic-field vector is unaffected by temperature.

Finally, and most importantly for the Extended Kalman Filter application, all sensor noise signals are assumed to be
white, Gaussian, stationary, and independent. This implies that a sensor’s noise characteristics are:

* zero-mean (u = 0)

« distributed according to a normal distribution with variance o2

* constant over time (02 # f(t))

* uncorrelated with other signals (E[(0w, — E[0w,2]) - (0w.y — Elow,y])] = 0)

The formulation of the covariance matrices relies heavily on these assumption.

Note: The process-noise vectors, w, result from sensor noise transmission through the individual state-transition
models, described in the sections to come.

! Due to the way the accelerometer measures acceleration, gravity appears like a deceleration and, as such, @grqv = —g. This is gravity
deflecting the proof-mass in the direction of the gravity vector; such a deflection caused solely by acceleration would require the body to accelerate
in the negative direction.

2 During a magnetic alignment maneuver, the magnetic measurements are recorded as the system rotates (about its z-axis) through 360 deg.
Upon completion of the maneuver, a best-fit ellipse is determined and used to model the hard and soft-iron distortions in the system (described
later).

3 In general you want the magnetic sensor to be in as magnetically clean a location as possible. Even by correcting for hard and soft-iron using
this relationship, large hard and soft-iron errors lead to progressively worse solutions.

14.3. Sensors 200

OpenlMU Documentation

14.4 Kalman Filter

Contents

* Prediction (High Dynamic Range (DR) Process)

e Innovation (Measurement Error)

* Update (Low DR Process)

The solution described in this document is based on a Kalman Filter that generates estimates of attitude, position,
and velocity from noisy sensor readings. The classic Kalman Filter works well for linear models, but not for non-
linear models. Therefore, an Extended Kalman Filter (EKF) is used due to the nonlinear nature of the process and
measurements model.

Kalman filters operate on a predict/update cycle'. The system state at the next time-step is estimated from current
states and system inputs. For attitude calculations, this input is the angular rate-sensor signal; velocity and position
calculations use the accelerometer signal. The update stage corrects the state estimates for errors inherent in the
measurement signals (such as sensor bias and drift) using measurements of the true attitude, position, and velocity
estimated from the accelerometer, magnetometer, and GPS readings. As these signals are typically noisier” or provided
at a significantly lower rate than the rate-sensor, they are not used to propagate the attitude, instead their information
is used to correct the errors in the estimate.

For a discrete-time system the prediction and update equations are:

14.4.1 Prediction (High Dynamic Range (DR) Process)
In this stage of the EKF, the attitude, velocity, and acceleration are propagated forward in time from sensor readings.
k=1 = f (Tr1jp—1, Ugj—1)
Pyji—1=Fro1 - Pro_qjpor - Fio1” + Qps
The first equation (¥, ,—1) is the State Prediction Model and the second (F;—1) is the Covariance Estimate.
14.4.2 Innovation (Measurement Error)
In this stage, the errors between the predicted states and the measurements are computed.

Up =2 — hy

! Kalman Filtering: Theory and Practice Using MATLAB, 3rd Edition, Mohinder S. Grewal, Angus P. Andrews

2 In this case, noisier means that the sensor signals are corrupted, not just by electrical noise, but by external influences as well. In the case of
the accelerometer, the device picks up vehicle motion in addition to gravity information. The magnetometer signal is affected by external magnetic
sources, such as iron in passing vehicles and in roadways.

14.4. Kalman Filter 201

OpenlMU Documentation

14.4.3 Update (Low DR Process)

The final stage of the EKF generates updates (corrections) to the predictions based on the quality of the process models,
process inputs, and measurements.

Sk = Hj, - Pyp—r - Hi” + Ry,
Ky = Py - Hi" - 87!
AZy, = Ky - Uy
Tk = Tpjp—1 + AZg
AP, = =Ky - Hi - Pyjp—1
Py = Pyje—1 + AP
In the order listed, the above equations relate to:
1. Innovation Covariance
2. Kalman Gain
3. State Error
4. State Update
5. Covariance Error
6. Covariance Update

These terms will be defined in the sections that follow.

14.5 State Transition Models

14.5.1 System State-Transition Model Summary!

The state-transition models form the core of the EKF prediction stage by performing the following roles:

1) They form the equations that propagate the system states from one time-step to the next (using high-quality
sensor as the input)

2) They define the process-noise vectors relating each state to sensor noise

3) They enable computation of the process covariance matrix, Q, and process Jacobian, F. Both are used to propa-
gate the system covariance, P, from one time-step to the next.

The complete system state equation consists of 16 total states’

™ NED Position (3)

Gl NED Velocity (3)

=9 Ng® b= Body Attitude (4)
&L, Angular-Rate Bias (3)
Thygs Accelerometer Bias (3)

with the state-transition model, f, made up of five individual models (developed in upcoming sections):

Tr = f(Fe1, Too1) + Doy

! There are many papers describing the derivation and implementation issues for EKFs and Complementary-Filters. Several of the papers similar
to this implementation are referenced in the Reference section.

2 GPS measurements are in latitude/longitude/altitude. These are converted to position in the Earth-frame, #F. Position in the NED-frame is
calculated from the initial starting point at system startup. The state estimate is generated by integrating velocity (estimated from accelerometer
data).

14.5. State Transition Models 202

OpenlMU Documentation

where & is the state-vector, @ is the input-vector (consisting of sensor signals) and «J is the process-noise vector.

—

The expanded state-transition vector, f, is:
SN N
N N pB Brk_1 " Uk_lB. o N
5 Vi1 + [kal : (meas,k—1 abias,k—l) - agrav,kfl] -dt
= = _ di N 7B
f(@eo1,) = L+ % (Uneask—1 — Diask—1)] - V754
I3

and the process-noise vector, wy_1, is:

N pB =g
- kal Anoise dt
= _ _dt = s
Wr—1 = 5 T —k—1 wnozse
N7 2
N (0, 034.)
N (O, 044 a)

The sensor noise vectors, N, corresponding to the angular-rate and accelerometer bias states, are each 3x1 vectors
with elements described by a zero-mean Gaussian distribution with a variance of either 02, or o2, .

14.5.2 Individual State-Transition Models

Individual state-transition models are derived in the following sections:

Quaternion State-Transition Model

All state propagation equations used in this paper are based on the following Taylor-series expansion:

where terms higher than first-order are neglected. For attitude, the quaternion is propagated according to the expres-
sion:

— —

kA Qe—1+ Q1 - dt
where df is the integration time-step (sampling interval) and g}, —; is the current estimate of system attitude.

The kinematical equation that describes the rate-of-change of the attitude quaternion, é’k_l, is a function of true
angular velocity, J;,, as follows:

1

5 Qtrue,kfl “qk—1

s = 2

. - B .
where ¢yyc k-1 is formed from the components of the angular rate vector, (N wt’iue) and specifies the angular-rate
of the body relative to an inertially-fixed frame, measured in the body-frame. As all angular-rate measurements made
with MEMS sensors are relative to the inertial-frame, the notation is simplified to G2, ..

B
B "
@7 = wg
wZ
The quaternion propagation matrix, 251, at time-step k-1 is:
B B
0 —Wrk—1 TWyr—1 TWik_1
wB 0 w —wh
Qk: L= ;vgk—l B z,k—1 By,k—l
Wy k—1 _sz,kfl g We k—1
Wy k—1 Wy k—1 —Wrk—1 0

14.5. State Transition Models 203

OpenlMU Documentation

where (as noted above) all the rate components are estimates of the “true” rate measurements.

From the above expressions, the full state-transition model for system-attitude is:

1 S o
k= qk—1+ 5 ' Qtrue,k—l k-1 dt = [I4 + % : Qtrue,k—l] “qk—1

To find the noise term in the state-transition model, W, 1, expand the expression for €2;,.e 11 using the rate-sensor
model described earlier to explicitly show the constituent terms:

Qtrue,kfl = Qmeas,kfl - Qbias,kfl - Qnoise,kfl
Substitute this result into the expression for the attitude state-transition model:

—

dt dt od
k. = [14 + 9 (Qmeas,kfl - Qbias,kfl) - 9 Qnoise,k—l} " k-1

=®p_1 - qr—1 + Wy -1

®,._q is the state-transition matrix, defined as:

dt
(Dk—l = I4 + 5 . (Qmeas,kfl - Qbias,kfl)
and Wy ;1 is the quaternion process-noise vector:
- dt -
Wq,k—1 = _5 . Qnoise,kfl *Qk—1

Note: In this expression, the components of €,,,;s. are the noise components of the angular-rate signal, 03. This can
be expressed in terms of the sensor’s Angular Random Walk (ARW).

Recasting W, x—1, so the rate-sensor noise (w2 .) forms the input vector, results in the final expression for the

quaternion process-noise resulting from rate-sensor noise:

dt

. . - =B
Wq,k—1 = 75 " Ek—1 " Whoise

with the variable = _ relating the change in process noise to system attitude

and [, x| is the cross-product matrix.

The quaternion process noise vector is used to form the elements of the process covariance matrix (Q) related to the
attitude state. The covariance is computed according to the following equation:

By = cov (#,7) = B(—) - (7 ~)]

As mentioned previously, all processes considered in this paper assume white (zero mean) sensor noise that is uncor-
related across sensor channels. This simplifies the expression for the covariance to:

Yy = U_”q,kfl 'U_}qu
In addition to the assumption that the noise terms are white and independent, all axes are assumed to have the same
noise characteristics (0,,). Resulting in the final expression for ¥,:

l—q3 —qo-¢1 —q-9 —q-qs

 (ouedt)\2 —0-a 1—-¢d -a-¢@ —¢a-g
£, = (252)° :
—qo-q2 ¢ 1-¢ —q-q3
—q-g3 —q g —q2-q3 1—q;

14.5. State Transition Models 204

OpenlMU Documentation

Velocity State-Transition Model

The velocity propagation equation is based on the following first-order model:

—

Up = Ug—1 + Up—1 - dl

U1 is an estimate of system acceleration (linear-acceleration corrected for gravity) and is formed from the accelerom-
eter signal with estimated accelerometer-bias and gravity removed.

Gmeotion,k—1 = Omeas,k—1 — Obias,k—1 — Qgrav

Substituting this expression (along with the noise term) into the velocity propagation equation, and explicitly stating
the frames in which the readings are made, leads to:
=N _ =N >N NpB . =B
Vg = Uk—1 + (amotion,k—l - Rk:—l ’ a’noise) -dt
where
N N pB =B ~ B N
Amotion,k—1 — Rk—l ’ (ameas,k’—l - a’bias,k—l) — Qgrau

The velocity process-noise vector resulting from accelerometer noise is:

=N NpB =B
Wy g—1 = — kal “Qpoise * dt
leading to the final formulation for the velocity state-transition model:
N SN SN N
U = U + Qmotion,k—1 " dt + v,k—1

The velocity process noise vector is used to compute the elements of the process covariance matrix () related to the
velocity estimate, as follows:

. T
Ev = Wy,k—1 " wv7k71

By making the assumption that all axes have the same noise characteristics (¢,2) and manipulating the expression, the
result can be simplified to the following:

Sy = (04 - dt)’ - I

Position State-Transition Model

The position process model is based on the following first-order model:
T = Tk—1 + Tp—1 - dt
where F’k_l is the estimated velocity state, v _1. Substituting in the velocity term (including noise) results in:

T = Th—1 + Up—1 - dt + Wy p—1

Wy ,—1 is the process noise associated with the position state-transition model, which is directly related to the velocity
process noise:

u_]’r,krfl = ’U_jv,kfl -dt

=NRP | -ab,,. - dt*

notse

Like the previous process models, this expression is used to compute the elements of the process covariance matrix
(Q) related to the position estimate:

- -T
ET = Wrk—1" wr,kfl
By making the assumption that all axes have the same noise characteristics (c,2), ¥, simplifies to:

¥, = (0, - dt*)? - I3

14.5. State Transition Models 205

OpenlMU Documentation

Rate and Acceleration Bias State-Transition Models

The process models for the bias terms are based on the assumption that bias is made up of two components:
1) A constant bias offset (3]} /)

2) A randomly varying component superimposed on the offset (&Jg,.; ,) based on the measured bias-instability
value of the sensor

For the rate-sensor, the bias model is
~B ~B ~B
Whias = woffset + wdrift
The drift model follows a random-walk process', i.e. the drift value wanders according to a Gaussian distribution.
~B ~B ~B
Garift e = Barifto—1 t Gapipe g1 - dt
where

‘bgrift,k—l =N (O,Ufm,w)

Note: The subscript dd stands for “drift-dot”.

Based on this model, the process variance for &2 . ¢ attime, t, is given by:

2
Jd2,w(t) = [(Udd,w . \/E) . \/ﬂ
An empirical study related 044, to the Bl and ARW values as follows:

_2-m BI’
Zdde = 10(2) ARW

To find the rate-bias process-noise covariance, set ¢ = dt in the process-variance model (above), resulting in:
2
Suwb = 05, (dt) - Is = (0agw - dt)” - I3
The accelerometer drift model mirrors this formulation and results in:

2
Sab = 05 4(dt) - I3 = (0ga,e - dt)” - I

14.6 Process Models

14.6.1 Introduction

As the state-transition model is nonlinear, the state-transition vector cannot be directly used to propagate the covariance
forward in time. Instead the state-transition vector, f: is linearized based on the current system states and used for
this task. The resulting linearization (computed from the partial derivatives of f with respect to the system states,)
generates a matrix referred to as the Process Jacobian, F'. This matrix is used to propagate the covariance, P, forward
in time.

The covariance estimate is also affected by the process noise, which is related to sensor-noise levels. The more process
noise that exists in a system, the larger the covariance estimate will be at the next time step. This noise is reflected in
the process-noise covariance matrix, ().

Formulation of these matrices are described in the following sections.

! This is not a perfect assumption as the output of the model is unbounded while the actual process is not.

14.6. Process Models 206

OpenlMU Documentation

14.6.2 Individual Process Models
Process Jacobian

As the system is nonlinear, the vector f cannot be used to propagate the covariance matrix, P. Instead the Process
Jacobian, F', (a linearized version of the state-transition vector) is computed at each time step (based on the current
system states) to propagate P forward in time:

Fr1= ==
LT aE|
Tr—1,Uk—1
This requires taking the derivative of each state-equation with respect to each state. Each row of the Jacobian corre-
sponds to a specific state-equation; each column of the matrix corresponds to a specific system state. Performing this

operation results in:

03 I3 0O3x4 03 03

03 03 6’1}8(] 03 —NRB
F=Ig+ | Ouxs Ouxz 3-Q —1-2 0Oax3 |-dt

03 03 O3x4 03 03

03 03 O3xa 03 03

The one new term in the matrix, dvdq is defined as:

3v8q52-QF~{ 0 (6B)T }

a? —[aPx]
where Q - is:
- @ G~ @
Q F= q2 43 qo —aq1
g3 —q2 q1 q0
= [qv qo - I3 + [ivx]]
and
LB _ =B ~B
A" = Queqs — Abias

Process Noise Covariance Matrix

The process covariance acts as a weighting matrix for the system process. It relates the covariance between the i and
jt" element of each process-noise vector. It is defined as:

Eij = CO’U(fi,fj) = E[(ZE} - ,U,i) . (fj - uj)]

A Kalman Filter can be viewed the combination of Gaussian distributions to form state estimates. () provides a
measure of the width of the Gaussian distribution related to each noise state. The wider the distribution, the more
uncertainty exists in the process model. This leads to a state-update that affects the state more than if the model had a
tighter distribution, which results in an update having less influence on the particular state.

Based on the state process-noise vectors, wy (found in previous sections), the Process Noise Covariance Matrix is:

X 03 O3xa O3 03
03 Yy O3xa O3 03
Qr = | Oaxz Ouxz X5 Osxz 0Osxs
03 03 O3xa 2w O3
03 03 O3xa 03 Zap

14.6. Process Models 207

OpenlMU Documentation

The individual process covariance are repeated here:
S = (0 - dt?)? - Iy
Sy = (04 - dt)’ - I

1-¢ —qo-©1 —q-9 —q-a

N (gwdt 2 —q-q¢ 1- Q% —q1°92 —q1-g3
q= () R —aq - 1—0¢2 —q-

qo * g2 q1 - q2 q2 q2 - q3

—q-q3 —q1-q3 —q2-q3 1—4q3

Ywb = (Jdd,w : dt)2 I3
Sab = (Cdd,a - dt)2 I3

14.7 Measurement Model

Overview

It is possible to choose among various measurement models for a given EKF implementation. A particular
model is selected based on many factors, one being the limitations of the available measurements. This
formulation being described was selected due to the incomplete knowledge of the magnetic environment
of the system and uses the available sensor information as follows:

1 B

meas

J_QB

meas

#. Accelerometers “level” the system (used to compute and) EN

#. Magnetometers and/or GPS heading information align the | -frame with true or magnetic
north (Na)+)

#. GPS position and velocity measurements update the position and velocity estimates (¥ and
SN
)

Based upon these steps, the measurement vector, 2}, is formed:

SN
T%PS
2k = Yaps
NQ@B
@meas
with the corresponding measurement model, hy:
SN
. r%’ed
hy = Upred
NGB
®pred

Both ¥6Z . and ¥OE _ are 3x1 column vectors containing the roll, pitch, and heading values.

Measurement Model

The measurement model, ﬁk relates the system states, 2k, to the system measurements. The position
and velocity elements of this vector come directly from the position and velocity states, while 657«@ 418
computed from N qfre 4» as follows:

L(bfred = atan?2 [2 : (CI2 g3+ qo - (I1) Q0% — @it — 2 + Q32]

L95«&1 =—asin[2- (¢ @3 — 0)]

NT/J;}ed =atan2 [2- (q1- g2+ qo - q3) ,q0° + @1 — g2 — g5

14.7. Measurement Model

208

MeasurementModels.html#measurement-models

OpenlMU Documentation

Measurement Vector (:math:‘vec{z}_ {k}‘)

The measurement vector, Zj, is comprised of position, velocity, and attitude information as defined above.
It is formed from sensor measurements. However, only the GPS velocity is directly available from mea-
surements; other information must be derived from sensor readings using the relationships described
below.

Roll and Pitch Measurements

Roll and pitch values are computed from the accelerometer signal. Under static conditions, measurements
made by the accelerometer consists solely of gravity and sensor noise. Along the axis pointed in the
direction of gravity, the sensor measures -1 [g]. This is due to the proof-mass being pulled in the direction
of gravity, which, in the absence of gravity, is equivalent to a deceleration of 1 [g].

—

Omeas = Qgrav = —9

Static roll and pitch values are determined by noting that gravity is constant in the N-Frame (perp-Frame):

0
=g =30
1

and can be transformed into the body frame through ® R+:

0
g»B:BRL.g»l:(LRB)T.g»L:(LRB)T_ 0
1

Using the definition of -+ R? (discussed in Attitude Parameters) and expanding the equation, the ac-
celerometer measurements can be related to roll and pitch angles:

?fB = _Eifzeas
—sin (+65 —aB,
cos (J‘GB) - SN (J‘gbB) = —aﬁy
cos (F67) - cos (+¢P) —aB

From this result, the angles corresponding to the accelerometer signal are found:

1.B

meas z s)

= atan2(—a,,,, —a,,,
J_QB

meas

)

= —asin(—a,,,

where, a2 _ is the x-axis acceleration value normalized by the total acceleration magnitude:

mx

B
. a
e =]

ameas

Normalization of the y and z-axis accelerometer values can be performed. However this is not required as
the atan function uses the ratio of the two (the normalization factor cancels out).

Heading Measurements
Heading measurements are determined from one (or both) of the following:
1. Magnetometers
2. GPS Velocity

Magnetometer-Based Heading

14.7. Measurement Model

209

AttitudeParameters.html#mathematical-relationships-between-attitude-parameters

OpenlMU Documentation

Magnetometers measure the local magnetic field at a high DRs but the readings can be affected by hard
and soft-iron disturbances in the system or by changes in the external magnetic field. Hard and soft-iron
effects are local to the system and can be accounted for; external field disturbances cannot be corrected.

Adjustment of the magnetic field measurement for hard/soft-iron disturbances can be performed according
to the following equation:

> B T - B - B - B
m = Rs; - SSI “Rsr - (mmeas — Mpigs — mHI)

corr

where 1.5 is the measured magnetic field vector in the body-frame, 72 ; is the hard-iron disturbance,

and Rgy and Sgy are the soft-iron disturbances.

Note: For this analysis the magnetometer bias is neglected; assumed to be negligible or lumped in with
the hard-iron.

Hard and soft-iron parameters are estimated by performing a magnetic-alignment maneuver.

Note: The application of these corrections do not adjust individual magnetometer channels to match
the actual field strength. Only the relative magnetic field is corrected, resulting in a unit-circle for the
xy magnetic-field. However, as shown later, this enables the heading to be calculated from the corrected
signal.

Heading calculation

The heading is computed using the fact that, in the magnetic NED-frame, the y-axis component of the
magnetic field is zero. In the true-north NED-frame this is not the case; a magnetic declination angle
corrects for this. The magnetic field at a given point can be found using the World Magnetic Model
(WMM) or from NOAA’s website (https://www.ngdc.noaa.gov/geomag-web/#igrfwmm). In San Jose,
CA, the magnetic field estimates are provided in Table:

Model Used: WMM2015

Latitude: 37° 18" 29" N

Longitude: 121° 50" 51" W o

Elevation: 0.0 km Mean Sea Level

Date Declination Inclination Horizontal North Comp East Comp Vertical Comp Total Field
(+E |-wW) (+D |-u) Intensity (+N | -5) (+E | -wW) (+D |-u)

2018-07-12 13° 15° 38" 60° 56" 1" 23,328.4 nT 22,706.4 nT 5,351.0 nT 41,970.7 nT 48,018.3 nT

Change/year -0° 5" 42%yr -0° 0" 12" /yr -44.9 nT/yr -34.9 nT/yr -47.9 nT/yr -86.7 nT/yr -97.6 nT/yr

Uncertainty o° 20 0° 13" 133 nT 138 nT 89 nT 165 nT 152 nT

Fig. 2: Magnetic Field Components based on WMM
Figure illustrates the relationship between the Lines of constant Lat/Lon, the NED-frame, and the perp-
frame. Declination is specified with § and heading is specified with).
The magnetic field vector, 5, can be broken down into two components:
1) the xy-plane component and
2) the vertical component

The relationship between heading and magnetic field is based on the components of b™ as measured in

14.7. Measurement Model

210

https://www.ngdc.noaa.gov/geomag-web/#igrfwmm

OpenlMU Documentation

Line of s i
Const. Lon |—= X1
oA
2/
__I'-
b/
- F
~ /
H.H'\-\._ :I__r)
~— / Line of
.. F
e Const. Lat
' .H"-\._
/! S
_:'I ~ i
i e
) T .
_.r"r ik
.-":r v-l
i
rd
il
._.I'

Fig. 3: Relationship of Magnetic-Field to N and B-Frames

the NED-frame:

bay
L LRN N _ LpN | 0
bz
Expanding the expression results in the following:
bt bay - cos(Nz/)J‘)
b;- = —byy - sin(N¢l)
by by
From this, the heading is computed:
bz Lo N, L _bl _ml
tan(Vyt) = = — (N’L/}L) =g =
ba;y - COS (w) bgc mcorT,x

Note: The values for b and b; are the corrected and ‘leveled’ values of the measured magnetic-field in

the body-frame; roll and pitch estimates are used to level the signal via J‘Rfre d-

- | _ 1 pB - B
corr — Rpred *Meorr

Note: As this calculation only corrects the magnetic-field in the xy body-frame, the heading solution is
best when the system is nearly level. he solution begins to degrade as the roll and pitch increase. This
can be accounted for by adjusting the measurement covariance matrix, R, accordingly. Additionally, the
solution also begins to degrade as the iron in the system increases.

GPS Heading

14.7. Measurement Model 211

OpenlMU Documentation

Heading is also provided directly from the GPS messages. The four messages currently decoded by the
IMU381/0OpenIMU firmware provide true heading via messages listed in Table.

Table 3: GPS Messaging and Heading Measurement

System Message Description Units
NovAtel BESTVEL [deg]

Actual direction of
motion over

ground (track over
ground) with

respect to True North

NMEA VTG True track made good | [deg]
SiRF [deg x 100]

Geodetic Navigation Course Over Ground
Data — Message ID 41 (COG, True)

ublox NAV-VELNED Heading of motion 2-D | [deg]

14.7.1 Choosing the Heading Measurement Source

Deciding upon the source of the heading information is ultimately up to the user. In the Aceinna algorithm, the source
switches from GPS to magnetometer based on the operating condition. Specifically, during periods of motion, GPS
measurements are used as the are considered more accurate as they are not influenced by the magnetic environment.
However, when at rest the GPS heading provides no heading information. In this case, the magnetometer provides
heading information.

This implementation requires the algorithm to switch not only the source of the data but also the related measurement
covariance values.

GPS Position and Velocity

GPS-based position is derived from the GPS lat/lon/alt message (BestPos, GGA, etc) and converted to NED-position
using the WGS84 model.

GPS-based velocity is obtained from the BestVel, etc message. However, the NMEA message does not provide vertical
velocity, derived from or accounted for in other ways. In all cases the N and E-velocity is calculated from heading and
ground speed. The relationship is:

UN = Uxy * COS (ij_)

VE = Uxy * sin (ij_)

14.8 Measurement Vector

14.8.1 Model Overview

It is possible to choose among various measurement models for a given EKF implementation. The particular model
is selected based on many factors, one being the limitations of the available measurements. This formulation was

14.8. Measurement Vector 212

OpenlMU Documentation

selected due to the incomplete knowledge of the magnetic environment of the system and uses the available sensor
information as follows:

L¢B and LB)FN

1) Accelerometers “level” the system (used to compute ~¢;;, .« s

2) Magnetometers and/or GPS heading information align the perp-frame with true or magnetic north (V)
3) GPS position and velocity measurements update the position and velocity estimates (7 and &)

Based upon these steps, the measurement vector, Zj, is formed:

N

r]c\:fps

vaps

NQ@B
67neas

A\
I

with the corresponding measurement model, h:
=N
R T;:])\?f“ed
hk = vpred
NQB
C_‘)preai

Both Y65 and N ég,e 4 are 3x1 column vectors containing the roll, pitch, and heading values. FN

14.8.2 Measurement Vector (z})

The measurement vector, Zj, is comprised of position, velocity, and attitude information as defined above. It is formed
from sensor measurements:. However, only the GPS velocity is available directly from measurements; other informa-
tion must be derived from sensor readings using the relationship described below.

Roll and Pitch Measurements

Roll and pitch values are computed from the accelerometer signal. Under static conditions, measurements made by
the accelerometer consists solely of gravity and sensor noise. Along the axis pointed in the direction of gravity, the
sensor measures -1 [g]. This is due to the proof-mass being pulled in the direction of gravity, which is equivalent to a
deceleration of 1 [g] in the absence of gravity.

—

Umeas = Qgrav = —9

Static roll and pitch values are determined by noting that gravity is constant in the N-Frame (perp-Frame):
0

L =<0
1

and can be transformed into the body frame through ® R*:

0
gB:BRngL:(LRB)T.ﬁL:(LRB)T. 0
1

Using the definition of ~ R? (discussed in Attitude Parameters) and expanding the equation, the accelerometer mea-
surements can be related to roll and pitch angles:

14.8. Measurement Vector 213

AttitudeParameters.html#mathematical-relationships-between-attitude-parameters

OpenlMU Documentation

—sin (J‘QB —aB,
cos (£08) - sin (t¢P) b = —afw
cos (+67) - cos (+¢7) —aB

From this result, the angles corresponding to the accelerometer signal are found:

1B _ B B
meas atan2(_amy’ _a’mz)
1gB _ ; ~B
emeas - —CLSZ’I’L(—Cme)
where, a2 _ is the x-axis acceleration value normalized by the total acceleration magnitude:
B
ELB _ o
mx ~ ||7B
||a’meas H

Normalization of the y and z-axis accelerometer values can be performed. However this is not required as the atan
function uses the ratio of the two (the normalization factor cancels out).

Heading Measurements

Heading measurements are determined from the following:
1) Magnetometers

2) GPS Velocity

Magnetometer-Based Heading

Magnetometers measure the local magnetic field at a high DRs but the readings can be affected by hard and soft-iron
disturbances in the system or by changes in the external magnetic field. Hard and soft-iron effects are local to the
system and can be accounted for; external field disturbances cannot be corrected.

Adjustment of the magnetic field measurement for hard/soft-iron disturbances can be performed according to the
following equation:

-B _ T (=B - B - B
Meoryr = Rsr-Ssr-Rsr™ - (mmeas — Mpyjqs — mHI)
where mB_ is the measured magnetic field vector in the body-frame, /7% is the hard-iron disturbance, and Rgy

and Sg; are the soft-iron disturbances. Note: for this analysis the magnetometer bias is neglected; assumed to be
negligible or lumped in with the hard-iron.

Hard and soft-iron parameters are estimated by performing a magnetic-alignment maneuver. Note that the application
of these corrections do not adjust individual magnetometer channels to match the actual field strength. Only the relative
magnetic field is corrected, resulting in a unit-circle for the xy magnetic-field. However, as shown later, this enables
the heading to be calculated from the corrected signal.

Heading calculation

The heading is computed using the fact that, in the magnetic NED-frame, the y-axis component of the magnetic
field is zero. In the true-north NED-frame this is not the case; a magnetic declination angle corrects for this. The
magnetic field at a given point can be found using the World Magnetic Model (WMM) or from NOAA’s website
(https://www.ngdc.noaa.gov/geomag-web/#igrfwmm). In San Jose, CA, the magnetic field estimates are provided in
Table 4:

Figure 4 illustrates the relationship between the Lines of constant Lat/Lon, the NED-frame, and the perp-frame.
Declination is specified with § and heading is specified with .

The magnetic field vector, b, can be broken down into two components:

14.8. Measurement Vector 214

https://www.ngdc.noaa.gov/geomag-web/#igrfwmm

OpenlMU Documentation

Magnetic Field x®

Model Used: WMM2015

Latitude: 37° 18" 29" N

Longitude: 121° 50" 51" W o

Elevation: 0.0 km Mean Sea Level

Date Declination Inclination Horizontal North Comp East Comp Vertical Comp Total Field
(+E |-W) (+D |-Uu) Intensity (+N |-5) (+E |-wW) (+D |-u)

2018-07-12 13° 15" 38" 60° 56" 1" 23,328.4 nT 22,706.4 nT 5,351.0 nT 41,970.7 nT 48,018.3 nT

Change/year -0° 5 42%yr -0° 0" 12" yr -44.9 nT/yr -34.9 nT/yr -47.9 nT/yr -86.7 nT/yr -97.6 nT/yr

Uncertainty o° 20 0° 13" 133 nT 138 nT 89 nT 165 nT 152 nT

Fig. 4: Table 4: Magnetic Field Components based on WMM

Line of
Const. Lon

X1

Line of
Const. Lat

Yu

¥

Fig. 5: Figure 4: Relationship of Magnetic-Field to N and B-Frames

14.8. Measurement Vector

215

OpenlMU Documentation

1) the xy-plane component and
2) the vertical component

The relationship between heading and magnetic field is based on the components of b" as measured in the NED-frame:

bay
BL_LRN N _L1pN |
b
Expanding the expression results in the following:
bt bay - cos (NwL)
bj =< —byy - sin(NwJ‘)
b >
From this, the heading is computed:
c (N L i 1L
oty — b () b i,
bxy * COS (ij') bé_ mé_orr,z

Note: the values for b and bj are the corrected and ‘leveled’ values of the measured magnetic-field in the body-frame;
roll and pitch estimates are used to level the signal via - R5

pred*
- | _ 1 pB - B
corr Rpred “Meorr

Note: as this calculation only corrects the magnetic-field in the xy body-frame, the heading solution is best when the
system is nearly level. he solution begins to degrade as the roll and pitch increase. This can be accounted for by
adjusting the measurement covariance matrix, R, accordingly. Additionally, the solution also begins to degrade as the
iron in the system increases.

GPS Heading

Heading is also provided directly from the GPS messages. The four messages currently decoded by the
IMU381/0OpenIMU firmware provide true heading via messages listed in Table 6.

Table 4: Table 6: GPS Messaging and Heading Measurement

System Message Description Units
NovAtel BESTVEL [deg]

Actual direction of
motion over

ground (track over
ground) with
respect to True North

NMEA VTG True track made good [deg]

SiRF [deg x 100]
Geodetic Navigation Course Over Ground
Data — Message ID 41 (COG, True)

ublox NAV-VELNED Heading of motion 2-D [deg]

of the PS readings and angles derived from accelerometer readings (equations provided in Measurement Covariance
section):

14.8. Measurement Vector 216

OpenlMU Documentation

GPS Position and Velocity

GPS-based position is derived from the GPS lat/lon/alt message (BestPos, GGA, etc) and converted to NED-position

using the WGS84 model.

GPS-based velocity is obtained from the BestVel, etc message. However, the NMEA message does not provide vertical
velocity, derived from or accounted for in other ways. In all cases the N and E-velocity is calculated from heading and

ground speed. The relationship is:

UN = Uxy * COS (NwL)

VE = Uxy * sin (N1/)L)

14.9 Innovation / Measurement Error

14.9.1 Innovation Overview

The innovation (measurement error) is formed from the sensor measurements and the predicted states. As the mea-
surements and the system states are often not the same, one or the other needs to be transformed into the measurement.
In the case of this algorithm, the state consists of an attitude quaternion, NED-velocity, and NED-position. The mea-
surement come from accelerometer readings, GPS latitude/longitude/altitude measurements, and horizontal/vertical
velocities along with ground-track. In this case either the states need to be converted to match the measurements or

vice-versa.

Once the measurements vectors are formed, the innovation (measurement error), Ik, is computed:

Uy = 2 — i,

This result is used in the update stage of the EKF to generate the state error, A%y, given the Kalman gain matrix.

The available sensor information is used as follows:

1B 1B
meas and ameas

1. Accelerometers “level” the system (used to compute) FN

2. Magnetometers and/or GPS heading information align the perp-frame with true or magnetic north (V)
3. GPS position and velocity measurements update the position and velocity estimates (7N and 77)

Measurement Details To Be Provided

14.10 Magnetic-Alignment

Overview

A so-called “magnetic-alignment” procedure enables estimation of the hard and soft-iron disturbances in
the system. As these disturbances are fixed in the body, the corrections must be applied in the body-frame.
The procedure works as follows:

1) The magnetic-field is measured and recorded as the system undergoes a 360+ degree rotation about
the z-axis. Ideally this is done when the system is level.

2) Upon completion, an algorithm determines the ellipse that best fits the distorted circle.

3) Ellipse parameters (related to the hard and soft-iron disturbances) are saved in the firmware and used
to correct the magnetic-field measurements.

In most cases an ellipse describes magnetic-field distortions quite well. The ellipse parameters relate to
the magnetic disturbances as follows:

14.9. Innovation / Measurement Error

217

OpenlMU Documentation

* The center of the ellipse is equal to the hard-iron values

» The angle the major-axis of the ellipse makes with a nominal x-axis is equal to the soft-iron angle
(which forms the matrix Rgy)

* The major and minor-axis lengths forms the scaling matrix Ssr
The formula for the corrected magnetic measurements works by:
1) Centering the ellipse by removing the hard-iron bias from the measurements
2) Rotating the ellipse to align with the nominal x and y-axes
3) Stretching the ellipse along its major and minor-axes to form a unit-circle
4) Rotating the unit-circle back into its nominal orientation

Note: as mentioned earlier, this correction is only done in the XY-plane and cannot correct the raw
magnetometer signal. It is only done to determine the system heading.

Example

Magnetic-field information was collected as the system underwent a 360 degree rotation about the z-
axis (Figure). This was performed twice, once in a disturbance-free environment (no iron added to the
system) and once with additional iron added to the system. The data in each case was processed and a
best-fit ellipse FN computed (dashed lines). In the disturbance-free case, the data and the fit were close to
circular. In the case with additional iron, however, the circle was clearly distorted and shifted away from
the origin.

Magnetic-Field Measurement in an Environment with and without Iron-Based Disturbances

For the measurements taken in the presence of additional iron, the estimation procedure produced the
following best-fit ellipse parameters:

Best-Fit Ellipse Parameters

Ellipse Parameter | Value Unit
Center -0.128, 0.126 | [G]
Major/Minor axes 0.225,0.198 [G]
Soft-Iron Scale Factor | 0.882 [N/A]
Angle to Major-Axis -48.497 [deg]

In the correction equation (above), Rg; is the rotation matrix and corrects for a rotation of the magnetic-
field due to soft-iron effects:

Rsr = [cos (n) SN (17) 1 —sin (n) cos (77) 1 001}

Where 7 is the angle from the nominal x-axis to the semi-major axis. Ss (the scale-factor matrix) corrects
for the stretching caused by the soft-iron:

Ssr=[1/a00 01/60 001]

a and b are the lengths of the semi-major and semi-minor axes.

For the data-set described above, the values for Rg; and Sy, resulting from the best-fit ellipse parameters,
are:

RSI:[O.66266—O.748920 0.748920.662660 001]

and

531:[4.4522600 05.046890 001]

14.10. Magnetic-Alignment 218

OpenlMU Documentation

Applying these correction factors to the raw magnetic-field measurements results in the unit-circle shown
in Figure.

Corrected Magnetic Field Readings

Note: the nodes located at 45 degree increments around the circle are points where additional data was
collected to test the heading calculation (described in the next section).

Results

Table lists the heading computed from test data using the above equations relating heading to corrected
magnetic-field.

Heading Results from Magnetically Clean and Distorted Readings

True Disturbance-Free Data Data with Added Iron Source

Heading

[deg] i i

Heading [deg] Error [deg] Heading [deg] Error [deg]
0 359.69 -0.31 0.013 0.013

45 45.19 0.19 44.82 -0.18
90 89.96 -0.04 90.15 0.15
135 135.05 0.05 135.08 0.08
180 180.57 0.57 180.68 0.68
225 225.64 0.64 225.62 0.62
270 270.63 0.63 270.48 0.48
315 315.30 0.30 315.09 0.09
360 359.79 -0.21 0.10 0.10

Note: the raw results reported a systematic error of approximately 2.0 degrees on all heading values. This
was due to a misalignment of the test-fixture relative to true-north. The values presented in Table reflect
this 2.0 degree correction. The systematic error is visible in Figures with data-clusters that do not fall on
the x and y-axes.

14.11 Algorithms References

Contents

* General Kalman Filter References

» Extended Kalman Filter Implementations

* Mathematical References

14.11.1 General Kalman Filter References

Corey Montella. Lehigh University. May 2011. “The Kalman Filter and Related Algorithms: A Liter-
ature Review” (https://www.researchgate.net/publication/236897001_The_Kalman_Filter_and_Related_
Algorithms_A_Literature_Review)

14.11. Algorithms References 219

https://www.researchgate.net/publication/236897001_The_Kalman_Filter_and_Related_Algorithms_A_Literature_Review
https://www.researchgate.net/publication/236897001_The_Kalman_Filter_and_Related_Algorithms_A_Literature_Review

OpenlMU Documentation

Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction Problems”. Transaction of
the ASME - Journal of Basic Engineering, 35-45. (https://www.cs.unc.edu/~welch/kalman/media/pdf/
Kalman1960.pdf)

Juler, S., & Uhlmann, J. (n.d.). “A New Extension of the Kalman Filter to Nonlinear Systems” (http:
/[citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.2891&rep=rep 1 &type=pdf)

Gordon, N., Salmond, D., & Smith, A. (1993). “Novel approach to nonlinear/non-Gaussian Bayesian state
estimation”. IEEE Proceedings-F, (pp. 107-113). (http://www.irisa.fr/aspi/legland/ref/gordon93a.pdf)

Thrun, S., Burgard, W., & Fox, D. (2005). “Probabilistic Robotics”. Cambridge, MA: MIT Press. (https:
/ldocs.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf)

14.11.2 Extended Kalman Filter Implementations

Sabatini, A.M. Quaternion-based extended Kalman filter for determining orientation by inertial and mag-
netic sensing. IEEE Trans. Biomed. Eng. 2006

14.11.3 Mathematical References

Process Models

JA Farrell, M. Barth. “The global positioning system & inertial navigation”. McGraw-Hill
1998.

A Huster. “Relative position sensing by fusion monocular vision and inertial rate sensors”.
2003.

S Julier, J. K. Uhlmann. “A new extension of the Kalman filter to nonlinear system”. Pro-
ceedings of AeroSense: The 11th International Symposium on Aerospace/Defense Sensing
Simulation and Controls Multi Sensor Fusion Tracking and Rescource Management II SPIE.
1997.

E Nebot, H. Durrant-Whyte. “Initial calibration and alignment of low-cost inertial navigation
units for land vehicle applications”. Journal of Robotic Systems, vol. 16, no. 2. 1999.

M Park. “Error analysis and stochastic modeling of MEMS based inertial sensors for land
vehicle navigation applications”. vol 4. 2004.

OS Salychev, V. V. Voronov, M. E. Cannon, G. Lachapelle. “Low cost INS/GPS integration:
concepts and testing”. Proceeding of the Institute of Navigation National Technical Meeting.
2000.

S Sukkarieh. “Low cost high integrity aided inertial navigation systems for autonomous land
vehicles”. 2000.

R van der Merwe, EA Wan. “Sigma-point Kalman filters for integrated navigation”. Proceed-
ings of the 60th Annual Meeting of the Institute of Navigation (ION). June 2004.

EA Wan, R. van der Merwe. “The unscented Kalman filter for nonlinear estimation”. Sympo-
sium 2000 on Adaptive Systems for Signal Processing Communication and Control. vol 10.
2000.

G Welch, G. Bishop. “An introduction to the Kalman filter SIGGRAPH 2001 course 8”. Com-
puter Graphics Annual Conference on Computer Graphics & Interactive Techniques. Aug
2001.

Measurement Models

14.11. Algorithms References 220

https://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
https://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.2891&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.2891&rep=rep1&type=pdf
http://www.irisa.fr/aspi/legland/ref/gordon93a.pdf
https://docs.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf
https://docs.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf

OpenlMU Documentation

Jrg F Wagnera, Thomas Wieneke. “Integrating satellite and inertial navigation - conventional
and new fusion approaches”. Control Engineering Practice, Volume 11, Issue 5, May 2003.
(https://www.sciencedirect.com/science/article/abs/pii/S0967066102000436)

Agus Budiyono. “Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Sys-
tems”. (2012) “Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems”,
Industrial Robot: An International Journal, Vol. 39 Iss: 3 (https://www.researchgate.
net/profile/Agus_Budiyono/publication/234119885_Principles_of _GNSS_Inertial
and_Multi-sensor_Integrated_Navigation_Systems/links/02e7e51df4ead46a61000000/
Principles-of-GNSS-Inertial-and- Multi- sensor-Integrated- Navigation-Systems.pdf)

Innovation (Measurement Error)

Drora Goshen-Meskin; Itzhack Y. Bar-Itzhack. “Unified approach to inertial navigation system
error modeling”. Journal of Guidance, Control, and Dynamics, May 1992, Vol. 15, No. 3
(https://arc.aiaa.org/doi/pdf/10.2514/3.20887)

George Arshal. “Error equations of inertial navigation”. July 1987. Journal of Guidance,
Control, and Dynamics, July 1987, Vol. 10, No. 4 (https://doi.org/10.2514/3.20225)

Drora Goshen-Meskin And Itzhack Y. Bar-Itzhack. “Unified approach to inertial navigation
system error modeling” journal of Guidance, Control, and Dynamics, May 1992, Vol. 15, No.
3 https://doi.org/10.2514/3.20887

Magnetic-Alignment

Sabatini, A.M. Quaternion-based extended Kalman filter for determining orientation by inertial
and magnetic sensing. IEEE Trans. Biomed. Eng. 2006

Sebastian O.H. Madgwick. “An efficient orientation filter for inertial and inertial-magnetic
sensor arrays”. April 30, 2010. University of Bristol UK (https:/forums.parallax.com/uploads/
attachments/41167/106661.pdf)

Marins, JoA£o LuAs; Yun, Xiaoping; Bachmann, Eric R.; McGhee, Robert B.; Zyda, Michael
J. “An Extended Kalman Filter for Quaternion-Based Orientation Estimation Using MARG
Sensors” Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Maui, Hawaii, USA, Oct. 29 - Nov. 03, 2001 (https://calhoun.nps.edu/bitstream/
handle/10945/41567/IROS2001.pdf;sequence=3)

Other References

Other References - Keith Mitiguy Kane - To Be Provided

14.11. Algorithms References 221

https://www.sciencedirect.com/science/article/abs/pii/S0967066102000436
https://www.researchgate.net/profile/Agus_Budiyono/publication/234119885_Principles_of_GNSS_Inertial_and_Multi-sensor_Integrated_Navigation_Systems/links/02e7e51df4ead46a61000000/Principles-of-GNSS-Inertial-and-Multi-sensor-Integrated-Navigation-Systems.pdf
https://www.researchgate.net/profile/Agus_Budiyono/publication/234119885_Principles_of_GNSS_Inertial_and_Multi-sensor_Integrated_Navigation_Systems/links/02e7e51df4ead46a61000000/Principles-of-GNSS-Inertial-and-Multi-sensor-Integrated-Navigation-Systems.pdf
https://www.researchgate.net/profile/Agus_Budiyono/publication/234119885_Principles_of_GNSS_Inertial_and_Multi-sensor_Integrated_Navigation_Systems/links/02e7e51df4ead46a61000000/Principles-of-GNSS-Inertial-and-Multi-sensor-Integrated-Navigation-Systems.pdf
https://www.researchgate.net/profile/Agus_Budiyono/publication/234119885_Principles_of_GNSS_Inertial_and_Multi-sensor_Integrated_Navigation_Systems/links/02e7e51df4ead46a61000000/Principles-of-GNSS-Inertial-and-Multi-sensor-Integrated-Navigation-Systems.pdf
https://arc.aiaa.org/doi/pdf/10.2514/3.20887
https://doi.org/10.2514/3.20225
https://doi.org/10.2514/3.20887
https://forums.parallax.com/uploads/attachments/41167/106661.pdf
https://forums.parallax.com/uploads/attachments/41167/106661.pdf
https://calhoun.nps.edu/bitstream/handle/10945/41567/IROS2001.pdf;sequence=3
https://calhoun.nps.edu/bitstream/handle/10945/41567/IROS2001.pdf;sequence=3

cHAPTER 15

Magnetic Sensor Algorithms

OpenIMU ships with a number of ready to use, downloadable applications to help you get started.

This section discusses algorithms that can make use of the OpenIMU’s on-board magnetic sensor. Currently, this is
primarily for Magnetic Alignment also referred to as Compass Calibration, or Hard/Soft Iron Calibration.

In the future, this section may include other algorithms that make use of the magnetometer including event detection
and pedestrian dead reckoning.

222

https://developers.aceinna.com/code/apps

Part IV

Miscellaneous

223

cHAPTER 16

C-Code Serial Driver

C-code Serial Driver - Details To Be Provided

224

Index

E

environment variable
ABSOLUTEMAXIMUMRATINGS, 158
COMPLIANCE, 158
ELECTRICAL, 126, 158
ENVIRONMENT, 126, 158
INPUTVOLTAGETOLERANCE, 159
PHYSICAIL, 126, 158
VALUES, 158
VOLTAGEVALUES, 158

225

	I OpenIMU
	Overview
	WARNING!!!! Before You Start Development
	Tools
	Ready-to-Use Applications
	Tutorial - What The User Needs to Know to Build The First Application
	OpenIMU Software Overview
	Algorithm Simulation System
	Python Serial Driver

	II Products
	OpenIMU300ZI - EZ Embed Industrial Module
	OpenIMU300RI - Rugged Industrial CAN Module
	OpenIMU330BI - Triple Redundant, 1.5 °/Hr, SMT Module
	OpenIMU335RI - Triple-Redundant Rugged Industrial CAN Module

	III Dev Support Algorithms
	OpenIMU Hardware/Software Interface
	EKF Algorithms
	Magnetic Sensor Algorithms

	IV Miscellaneous
	C-Code Serial Driver
	Index

